IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v283y2020i1p279-289.html
   My bibliography  Save this article

Maximum probabilistic all-or-nothing paths

Author

Listed:
  • Goldberg, Noam
  • Poss, Michael

Abstract

We consider the problem of a maximum probabilistic all-or-nothing network path. Each arc is associated with a profit and a probability and the objective is to select a path with maximum value for the product of probabilities multiplied by the sum of arc profits. The problem can be motivated by applications including serial-system design or subcontracting of key project activities that may fail. When subcontracting such critical success activities, each must be completed on time, according to the specs, and in a satisfactory manner in order for the entire project to be deemed successful. We develop a dynamic programming (DP) method for this problem in the acyclic graph setting, under an independence assumption. Two different fully-polynomial approximation schemes are developed based on the DP formulations, one of which applies repeated rounding and scaling to the input data, while the other uses only rounding. In experiments we compare the DP approach with mixed-integer nonlinear programming (MINLP) using a branch-and-cut method, on synthetic randomly generated instances as well as realistic ones.

Suggested Citation

  • Goldberg, Noam & Poss, Michael, 2020. "Maximum probabilistic all-or-nothing paths," European Journal of Operational Research, Elsevier, vol. 283(1), pages 279-289.
  • Handle: RePEc:eee:ejores:v:283:y:2020:i:1:p:279-289
    DOI: 10.1016/j.ejor.2019.11.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719309221
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.11.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soroush, H. M., 1994. "The most critical path in a PERT network: A heuristic approach," European Journal of Operational Research, Elsevier, vol. 78(1), pages 93-105, October.
    2. Icmeli-Tukel, Oya & Rom, Walter O., 1997. "Ensuring quality in resource constrained project scheduling," European Journal of Operational Research, Elsevier, vol. 103(3), pages 483-496, December.
    3. Rebi Daldal & Iftah Gamzu & Danny Segev & Tonguç Ünlüyurt, 2016. "Approximation algorithms for sequential batch‐testing of series systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(4), pages 275-286, June.
    4. Noam Goldberg, 2017. "Non‐zero‐sum nonlinear network path interdiction with an application to inspection in terror networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(2), pages 139-153, March.
    5. Mordechai I. Henig, 1994. "Efficient Interactive Methods for a Class of Multiattribute Shortest Path Problems," Management Science, INFORMS, vol. 40(7), pages 891-897, July.
    6. Arthur Warburton, 1987. "Approximation of Pareto Optima in Multiple-Objective, Shortest-Path Problems," Operations Research, INFORMS, vol. 35(1), pages 70-79, February.
    7. Yosi Ben-Dov, 1981. "Optimal Testing Procedures for Special Structures of Coherent Systems," Management Science, INFORMS, vol. 27(12), pages 1410-1420, December.
    8. David Pisinger, 1997. "A Minimal Algorithm for the 0-1 Knapsack Problem," Operations Research, INFORMS, vol. 45(5), pages 758-767, October.
    9. John P. Dickerson & Ariel D. Procaccia & Tuomas Sandholm, 2019. "Failure-Aware Kidney Exchange," Management Science, INFORMS, vol. 65(4), pages 1768-1791, April.
    10. Refael Hassin, 1992. "Approximation Schemes for the Restricted Shortest Path Problem," Mathematics of Operations Research, INFORMS, vol. 17(1), pages 36-42, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Jisun & Joung, Seulgi & Lee, Kyungsik, 2022. "A fully polynomial time approximation scheme for the probability maximizing shortest path problem," European Journal of Operational Research, Elsevier, vol. 300(1), pages 35-45.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Randeep Bhatia & Sudipto Guha & Samir Khuller & Yoram J. Sussmann, 1998. "Facility Location with Dynamic Distance Functions," Journal of Combinatorial Optimization, Springer, vol. 2(3), pages 199-217, September.
    2. Xie, Chi & Travis Waller, S., 2012. "Parametric search and problem decomposition for approximating Pareto-optimal paths," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 1043-1067.
    3. Luigi Di Puglia Pugliese & Francesca Guerriero, 2013. "A Reference Point Approach for the Resource Constrained Shortest Path Problems," Transportation Science, INFORMS, vol. 47(2), pages 247-265, May.
    4. Jianping Li & Weidong Li & Junran Lichen, 2014. "The subdivision-constrained routing requests problem," Journal of Combinatorial Optimization, Springer, vol. 27(1), pages 152-163, January.
    5. Arne Herzel & Stefan Ruzika & Clemens Thielen, 2021. "Approximation Methods for Multiobjective Optimization Problems: A Survey," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1284-1299, October.
    6. Alexandre Dolgui & Mikhail Y. Kovalyov & Alain Quilliot, 2018. "Simple paths with exact and forbidden lengths," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(1), pages 78-85, February.
    7. Li, Jianping & Ge, Yu & He, Shuai & Lichen, Junran, 2014. "Approximation algorithms for constructing some required structures in digraphs," European Journal of Operational Research, Elsevier, vol. 232(2), pages 307-314.
    8. Li Guan & Jianping Li & Weidong Li & Junran Lichen, 2019. "Improved approximation algorithms for the combination problem of parallel machine scheduling and path," Journal of Combinatorial Optimization, Springer, vol. 38(3), pages 689-697, October.
    9. Nir Halman & Mikhail Y. Kovalyov & Alain Quilliot & Dvir Shabtay & Moshe Zofi, 2019. "Bi-criteria path problem with minimum length and maximum survival probability," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 469-489, June.
    10. Rostami, Salim & Creemers, Stefan & Wei, Wenchao & Leus, Roel, 2019. "Sequential testing of n-out-of-n systems: Precedence theorems and exact methods," European Journal of Operational Research, Elsevier, vol. 274(3), pages 876-885.
    11. Claudio Contardo & Jorge A. Sefair, 2022. "A Progressive Approximation Approach for the Exact Solution of Sparse Large-Scale Binary Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 890-908, March.
    12. Strehler, Martin & Merting, Sören & Schwan, Christian, 2017. "Energy-efficient shortest routes for electric and hybrid vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 111-135.
    13. Mark M. Nejad & Lena Mashayekhy & Daniel Grosu & Ratna Babu Chinnam, 2017. "Optimal Routing for Plug-In Hybrid Electric Vehicles," Transportation Science, INFORMS, vol. 51(4), pages 1304-1325, November.
    14. Mhand Hifi & Rym M'Hallah, 2005. "An Exact Algorithm for Constrained Two-Dimensional Two-Staged Cutting Problems," Operations Research, INFORMS, vol. 53(1), pages 140-150, February.
    15. Sbihi, Abdelkader, 2010. "A cooperative local search-based algorithm for the Multiple-Scenario Max-Min Knapsack Problem," European Journal of Operational Research, Elsevier, vol. 202(2), pages 339-346, April.
    16. Jamain, Florian, 2014. "Représentations discrètes de l'ensemble des points non dominés pour des problèmes d'optimisation multi-objectifs," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/14002 edited by Bazgan, Cristina.
    17. Murthy, Ishwar & Sarkar, Sumit, 1997. "Exact algorithms for the stochastic shortest path problem with a decreasing deadline utility function," European Journal of Operational Research, Elsevier, vol. 103(1), pages 209-229, November.
    18. Jakob Puchinger & Günther R. Raidl & Ulrich Pferschy, 2010. "The Multidimensional Knapsack Problem: Structure and Algorithms," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 250-265, May.
    19. Ünlüyurt, Tonguç & Boros, Endre, 2009. "A note on "Optimal resource allocation for security in reliability systems"," European Journal of Operational Research, Elsevier, vol. 199(2), pages 601-603, December.
    20. Esaignani Selvarajah & Rui Zhang, 2014. "Supply chain scheduling to minimize holding costs with outsourcing," Annals of Operations Research, Springer, vol. 217(1), pages 479-490, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:283:y:2020:i:1:p:279-289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.