IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i3p303-d324756.html
   My bibliography  Save this article

Complexity Analysis and Stochastic Convergence of Some Well-known Evolutionary Operators for Solving Graph Coloring Problem

Author

Listed:
  • Raja Marappan

    (Department of Computer Applications, School of Computing, SASTRA Deemed University, Tirumalaisamudram 613401, India)

  • Gopalakrishnan Sethumadhavan

    (Department of Computer Applications, School of Computing, SASTRA Deemed University, Tirumalaisamudram 613401, India)

Abstract

The graph coloring problem is an NP -hard combinatorial optimization problem and can be applied to various engineering applications. The chromatic number of a graph G is defined as the minimum number of colors required to color the vertex set V ( G ) so that no two adjacent vertices are of the same color, and different approximations and evolutionary methods can find it. The present paper focused on the asymptotic analysis of some well-known and recent evolutionary operators for finding the chromatic number. The asymptotic analysis of different crossover and mutation operators helps in choosing the better evolutionary operator to minimize the problem search space and computational complexity. The choice of the right genetic operators facilitates an evolutionary algorithm to achieve faster convergence with lesser population size N through an adequate distribution of promising genes. The selection of an evolutionary operator plays an essential role in reducing the bounds for minimum color obtained so far for some of the benchmark graphs. This research also focuses on the necessary and sufficient conditions for the global convergence of evolutionary algorithms. The stochastic convergence of recent evolutionary operators for solving graph coloring is newly analyzed.

Suggested Citation

  • Raja Marappan & Gopalakrishnan Sethumadhavan, 2020. "Complexity Analysis and Stochastic Convergence of Some Well-known Evolutionary Operators for Solving Graph Coloring Problem," Mathematics, MDPI, vol. 8(3), pages 1-20, February.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:3:p:303-:d:324756
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/3/303/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/3/303/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lü, Zhipeng & Hao, Jin-Kao, 2010. "A memetic algorithm for graph coloring," European Journal of Operational Research, Elsevier, vol. 203(1), pages 241-250, May.
    2. Demange, Marc & Ekim, Tınaz & Ries, Bernard & Tanasescu, Cerasela, 2015. "On some applications of the selective graph coloring problem," European Journal of Operational Research, Elsevier, vol. 240(2), pages 307-314.
    3. Philippe Galinier & Jin-Kao Hao, 1999. "Hybrid Evolutionary Algorithms for Graph Coloring," Journal of Combinatorial Optimization, Springer, vol. 3(4), pages 379-397, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ferrarini, Luca & Gualandi, Stefano, 2022. "Total Coloring and Total Matching: Polyhedra and Facets," European Journal of Operational Research, Elsevier, vol. 303(1), pages 129-142.
    2. Olawale Titiloye & Alan Crispin, 2012. "Parameter Tuning Patterns for Random Graph Coloring with Quantum Annealing," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-9, November.
    3. Ivo Blöchliger & Nicolas Zufferey, 2013. "Multi-coloring and job-scheduling with assignment and incompatibility costs," Annals of Operations Research, Springer, vol. 211(1), pages 83-101, December.
    4. Natalia Castro & María A. Garrido-Vizuete & Rafael Robles & María Trinidad Villar-Liñán, 2020. "Contrast in greyscales of graphs," Journal of Combinatorial Optimization, Springer, vol. 39(3), pages 874-898, April.
    5. Alex Gliesch & Marcus Ritt, 2022. "A new heuristic for finding verifiable k-vertex-critical subgraphs," Journal of Heuristics, Springer, vol. 28(1), pages 61-91, February.
    6. Nicolas Zufferey & Olivier Labarthe & David Schindl, 2012. "Heuristics for a project management problem with incompatibility and assignment costs," Computational Optimization and Applications, Springer, vol. 51(3), pages 1231-1252, April.
    7. Xiao-Feng Xie & Jiming Liu, 2009. "Graph coloring by multiagent fusion search," Journal of Combinatorial Optimization, Springer, vol. 18(2), pages 99-123, August.
    8. Chung, Yerim & Culus, Jean-François & Demange, Marc, 2015. "Inverse chromatic number problems in interval and permutation graphs," European Journal of Operational Research, Elsevier, vol. 243(3), pages 763-773.
    9. Pop, Petrică C., 2020. "The generalized minimum spanning tree problem: An overview of formulations, solution procedures and latest advances," European Journal of Operational Research, Elsevier, vol. 283(1), pages 1-15.
    10. M Plumettaz & D Schindl & N Zufferey, 2010. "Ant Local Search and its efficient adaptation to graph colouring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(5), pages 819-826, May.
    11. Mabrouk, Bchira Ben & Hasni, Hamadi & Mahjoub, Zaher, 2009. "On a parallel genetic-tabu search based algorithm for solving the graph colouring problem," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1192-1201, September.
    12. Laurent Moalic & Alexandre Gondran, 2018. "Variations on memetic algorithms for graph coloring problems," Journal of Heuristics, Springer, vol. 24(1), pages 1-24, February.
    13. Li, Mingjie & Hao, Jin-Kao & Wu, Qinghua, 2024. "A flow based formulation and a reinforcement learning based strategic oscillation for cross-dock door assignment," European Journal of Operational Research, Elsevier, vol. 312(2), pages 473-492.
    14. C A Glass & A Prügel-Bennett, 2005. "A polynomially searchable exponential neighbourhood for graph colouring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(3), pages 324-330, March.
    15. Valmir C. Barbosa & Carlos A.G. Assis & Josina O. Do Nascimento, 2004. "Two Novel Evolutionary Formulations of the Graph Coloring Problem," Journal of Combinatorial Optimization, Springer, vol. 8(1), pages 41-63, March.
    16. Enrico Malaguti & Michele Monaci & Paolo Toth, 2008. "A Metaheuristic Approach for the Vertex Coloring Problem," INFORMS Journal on Computing, INFORMS, vol. 20(2), pages 302-316, May.
    17. Yupeng Zhou & Jinshu Li & Yang Liu & Shuai Lv & Yong Lai & Jianan Wang, 2020. "Improved Memetic Algorithm for Solving the Minimum Weight Vertex Independent Dominating Set," Mathematics, MDPI, vol. 8(7), pages 1-17, July.
    18. Renatha Capua & Yuri Frota & Luiz Satoru Ochi & Thibaut Vidal, 2018. "A study on exponential-size neighborhoods for the bin packing problem with conflicts," Journal of Heuristics, Springer, vol. 24(4), pages 667-695, August.
    19. Hertz, Alain & Widmer, Marino, 2003. "Guidelines for the use of meta-heuristics in combinatorial optimization," European Journal of Operational Research, Elsevier, vol. 151(2), pages 247-252, December.
    20. Bradley Hardy & Rhyd Lewis & Jonathan Thompson, 2018. "Tackling the edge dynamic graph colouring problem with and without future adjacency information," Journal of Heuristics, Springer, vol. 24(3), pages 321-343, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:3:p:303-:d:324756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.