IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v9y2006i2p143-149.html
   My bibliography  Save this article

Optimal pooled testing

Author

Listed:
  • Brett Saraniti

Abstract

This paper first characterizes three pooled testing techniques for generic testing conditions. It then applies these methods to demonstrate potential costs savings for universal HIV screening in the United Stated and Thailand. The success of these techniques in general is shown to be dependent on the prevalence as well as the disparity in prevalence between high and low risk groups. Further limitations on effectiveness include the potential impact of dilution on sensitivity. This and other limitations are addressed in the second section which focuses on applications of the techniques. Cost reductions are demonstrated to be feasible at prevalence of up to 30% and increasing dramatically at lower rates. Applying optimal pooled testing to universal HIV screening would result in an annual savings of over $1.4 billion in the United States and over $130 million in Thailand. Recent calls for universal HIV testing are based on the cost effectiveness of routine screening. These assessments may substantially overstate the cost of routine screening which strengthens the argument for universal screening. Copyright Springer Science + Business Media, Inc. 2006

Suggested Citation

  • Brett Saraniti, 2006. "Optimal pooled testing," Health Care Management Science, Springer, vol. 9(2), pages 143-149, May.
  • Handle: RePEc:kap:hcarem:v:9:y:2006:i:2:p:143-149
    DOI: 10.1007/s10729-006-7662-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10729-006-7662-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10729-006-7662-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lawrence M. Wein & Stefanos A. Zenios, 1996. "Pooled Testing for HIV Screening: Capturing the Dilution Effect," Operations Research, INFORMS, vol. 44(4), pages 543-569, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hrayer Aprahamian & Douglas R. Bish & Ebru K. Bish, 2020. "Optimal Group Testing: Structural Properties and Robust Solutions, with Application to Public Health Screening," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 895-911, October.
    2. Hani Serag & Isabel Clark & Cherith Naig & David Lakey & Yordanos M. Tiruneh, 2022. "Financing Benefits and Barriers to Routine HIV Screening in Clinical Settings in the United States: A Scoping Review," IJERPH, MDPI, vol. 20(1), pages 1-13, December.
    3. Hrayer Aprahamian & Douglas R. Bish & Ebru K. Bish, 2019. "Optimal Risk-Based Group Testing," Management Science, INFORMS, vol. 65(9), pages 4365-4384, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bar-Lev, S.K. & Parlar, M. & Perry, D. & Stadje, W. & van der Duyn Schouten, F.A., 2007. "Applications of bulk queues to group testing models with incomplete identification," Other publications TiSEM 0b1bfa5e-c1e6-43ec-9684-1, Tilburg University, School of Economics and Management.
    2. Hae-Young Kim & Michael G. Hudgens & Jonathan M. Dreyfuss & Daniel J. Westreich & Christopher D. Pilcher, 2007. "Comparison of Group Testing Algorithms for Case Identification in the Presence of Test Error," Biometrics, The International Biometric Society, vol. 63(4), pages 1152-1163, December.
    3. Bar-Lev, S.K. & Stadje, W. & van der Duyn Schouten, F.A., 2002. "Hypergeometric Group Testing with Incomplete Information," Other publications TiSEM bbeda767-e037-4441-a6d4-6, Tilburg University, School of Economics and Management.
    4. Yongxi Cheng & Yinfeng Xu, 2014. "An efficient FPRAS type group testing procedure to approximate the number of defectives," Journal of Combinatorial Optimization, Springer, vol. 27(2), pages 302-314, February.
    5. Tarun Jain & Bijendra Nath Jain, 2021. "Infection Testing at Scale: An Examination of Pooled Testing Diagnostics," Vikalpa: The Journal for Decision Makers, , vol. 46(1), pages 13-26, March.
    6. Claeys, Dieter & Walraevens, Joris & Laevens, Koenraad & Bruneel, Herwig, 2010. "A queueing model for general group screening policies and dynamic item arrivals," European Journal of Operational Research, Elsevier, vol. 207(2), pages 827-835, December.
    7. Hrayer Aprahamian & Douglas R. Bish & Ebru K. Bish, 2020. "Optimal Group Testing: Structural Properties and Robust Solutions, with Application to Public Health Screening," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 895-911, October.
    8. Hrayer Aprahamian & Hadi El-Amine, 2022. "Optimal Screening of Populations with Heterogeneous Risk Profiles Under the Availability of Multiple Tests," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 150-164, January.
    9. Nguyen, Ngoc T. & Bish, Ebru K. & Bish, Douglas R., 2021. "Optimal pooled testing design for prevalence estimation under resource constraints," Omega, Elsevier, vol. 105(C).
    10. Sarah Kok & Alexander Rutherford & Reka Gustafson & Rolando Barrios & Julio Montaner & Krisztina Vasarhelyi, 2015. "Optimizing an HIV testing program using a system dynamics model of the continuum of care," Health Care Management Science, Springer, vol. 18(3), pages 334-362, September.
    11. Jiejian Feng & Michael Zhang, 2017. "Reducing cost and abandoned E-components in incomplete identification," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(3), pages 281-290, March.
    12. Shaul K. Bar-Lev & Onno Boxma & Wolfgang Stadje & Frank A. Duyn Schouten, 2010. "A Two-Stage Group Testing Model for Infections with Window Periods," Methodology and Computing in Applied Probability, Springer, vol. 12(3), pages 309-322, September.
    13. Hrayer Aprahamian & Douglas R. Bish & Ebru K. Bish, 2019. "Optimal Risk-Based Group Testing," Management Science, INFORMS, vol. 65(9), pages 4365-4384, September.
    14. Yongxi Cheng & Ding-Zhu Du & Yinfeng Xu, 2014. "A Zig-Zag Approach for Competitive Group Testing," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 677-689, November.
    15. Shaul K. Bar-Lev & Wolfgang Stadje & Frank A. van der Duyn Schouten, 2004. "Optimal Group Testing with Processing Times and Incomplete Identification," Methodology and Computing in Applied Probability, Springer, vol. 6(1), pages 55-72, March.
    16. Bar-Lev, Shaul K. & Parlar, Mahmut & Perry, David & Stadje, Wolfgang & Van der Duyn Schouten, Frank A., 2007. "Applications of bulk queues to group testing models with incomplete identification," European Journal of Operational Research, Elsevier, vol. 183(1), pages 226-237, November.
    17. Wang, Dewei & McMahan, Christopher S. & Tebbs, Joshua M. & Bilder, Christopher R., 2018. "Group testing case identification with biomarker information," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 156-166.
    18. Bar-Lev, S.K. & Stadje, W. & van der Duyn Schouten, F.A., 2002. "Group Testing Models with Processing Times and Incomplete Identification," Other publications TiSEM dfe0978e-375f-4c44-b647-b, Tilburg University, School of Economics and Management.
    19. Shaul K. Bar‐Lev & Onno Boxma & Andreas Löpker & Wolfgang Stadje & Frank A. Van der Duyn Schouten, 2012. "Group testing procedures with quantitative features and incomplete identification," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(1), pages 39-51, February.
    20. Gustavo Quinderé Saraiva, 2023. "Pool testing with dilution effects and heterogeneous priors," Health Care Management Science, Springer, vol. 26(4), pages 651-672, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:9:y:2006:i:2:p:143-149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.