IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v32y4i2020p1101-1108.html
   My bibliography  Save this article

PyMOSO: Software for Multiobjective Simulation Optimization with R-PERLE and R-MinRLE

Author

Listed:
  • Kyle Cooper

    (School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47906; Tata Consultancy Services, Milford, Ohio 45150)

  • Susan R. Hunter

    (School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47906;)

Abstract

We present the PyMOSO software package for (1) solving multiobjective simulation optimization (MOSO) problems on integer lattices and (2) implementing and testing new simulation optimization (SO) algorithms. First, for solving MOSO problems on integer lattices, PyMOSO implements R-PERLE, a state-of-the-art algorithm for two objectives, and R-MinRLE, a competitive benchmark algorithm for three or more objectives. Both algorithms use pseudogradients, are designed for sampling efficiency, and return solutions that, under appropriate regularity conditions, provably converge to a local efficient set with probability 1 as the simulation budget increases. PyMOSO can interface with existing simulation software and can obtain simulation replications in parallel. Second, for implementing and testing new SO algorithms, PyMOSO includes pseudorandom number stream management, implements algorithm testing with independent pseudorandom number streams run in parallel, and computes the performance of algorithms with user-defined metrics. For convenience, we also include an implementation of R-SPLINE for problems with one objective. The PyMOSO source code is available under a permissive open-source license.

Suggested Citation

  • Kyle Cooper & Susan R. Hunter, 2020. "PyMOSO: Software for Multiobjective Simulation Optimization with R-PERLE and R-MinRLE," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 1101-1108, October.
  • Handle: RePEc:inm:orijoc:v:32:y:4:i:2020:p:1101-1108
    DOI: 10.1287/ijoc.2019.0902
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/ijoc.2019.0902
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2019.0902?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pierre L'Ecuyer & Richard Simard & E. Jack Chen & W. David Kelton, 2002. "An Object-Oriented Random-Number Package with Many Long Streams and Substreams," Operations Research, INFORMS, vol. 50(6), pages 1073-1075, December.
    2. Kyle Cooper & Susan R. Hunter & Kalyani Nagaraj, 2020. "Biobjective Simulation Optimization on Integer Lattices Using the Epsilon-Constraint Method in a Retrospective Approximation Framework," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 1080-1100, October.
    3. Lee, Loo Hay & Chew, Ek Peng & Teng, Suyan & Chen, Yankai, 2008. "Multi-objective simulation-based evolutionary algorithm for an aircraft spare parts allocation problem," European Journal of Operational Research, Elsevier, vol. 189(2), pages 476-491, September.
    4. L. Jeff Hong & Barry L. Nelson & Jie Xu, 2015. "Discrete Optimization via Simulation," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 9-44, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David J. Eckman & Shane G. Henderson & Sara Shashaani, 2023. "SimOpt: A Testbed for Simulation-Optimization Experiments," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 495-508, March.
    2. Kyle Cooper & Susan R. Hunter & Kalyani Nagaraj, 2020. "Biobjective Simulation Optimization on Integer Lattices Using the Epsilon-Constraint Method in a Retrospective Approximation Framework," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 1080-1100, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Preil, Deniz & Krapp, Michael, 2022. "Bandit-based inventory optimisation: Reinforcement learning in multi-echelon supply chains," International Journal of Production Economics, Elsevier, vol. 252(C).
    2. David J. Eckman & Shane G. Henderson & Sara Shashaani, 2023. "Diagnostic Tools for Evaluating and Comparing Simulation-Optimization Algorithms," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 350-367, March.
    3. Flötteröd, Gunnar, 2017. "A search acceleration method for optimization problems with transport simulation constraints," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 239-260.
    4. Xuefei Lu & Alessandro Rudi & Emanuele Borgonovo & Lorenzo Rosasco, 2020. "Faster Kriging: Facing High-Dimensional Simulators," Operations Research, INFORMS, vol. 68(1), pages 233-249, January.
    5. Bivand, Roger, 2010. "Exploiting Parallelization in Spatial Statistics: an Applied Survey using R," Discussion Paper Series in Economics 25/2010, Norwegian School of Economics, Department of Economics.
    6. Pierre L'Ecuyer & Richard Simard, 2014. "On the Lattice Structure of a Special Class of Multiple Recursive Random Number Generators," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 449-460, August.
    7. Gilles Pag`es & Benedikt Wilbertz, 2011. "GPGPUs in computational finance: Massive parallel computing for American style options," Papers 1101.3228, arXiv.org.
    8. Mehmet Tolga Cezik & Pierre L'Ecuyer, 2008. "Staffing Multiskill Call Centers via Linear Programming and Simulation," Management Science, INFORMS, vol. 54(2), pages 310-323, February.
    9. Yuwei Zhou & Sigrún Andradóttir & Seong-Hee Kim & Chuljin Park, 2022. "Finding Feasible Systems for Subjective Constraints Using Recycled Observations," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3080-3095, November.
    10. Radu Herbei & L. Mark Berliner, 2014. "Estimating Ocean Circulation: An MCMC Approach With Approximated Likelihoods via the Bernoulli Factory," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 944-954, September.
    11. Iago Medeiros & Lucas Pacheco & Denis Rosário & Cristiano Both & Jéferson Nobre & Eduardo Cerqueira & Lisandro Granville, 2021. "Quality of experience and quality of service‐aware handover for video transmission in heterogeneous networks," International Journal of Network Management, John Wiley & Sons, vol. 31(5), September.
    12. Kampf, M. & Kochel, P., 2006. "Simulation-based sequencing and lot size optimisation for a production-and-inventory system with multiple items," International Journal of Production Economics, Elsevier, vol. 104(1), pages 191-200, November.
    13. Lin, Rung-Chuan & Sir, Mustafa Y. & Pasupathy, Kalyan S., 2013. "Multi-objective simulation optimization using data envelopment analysis and genetic algorithm: Specific application to determining optimal resource levels in surgical services," Omega, Elsevier, vol. 41(5), pages 881-892.
    14. Ying Zhong & Shaoxuan Liu & Jun Luo & L. Jeff Hong, 2022. "Speeding Up Paulson’s Procedure for Large-Scale Problems Using Parallel Computing," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 586-606, January.
    15. Jiateng Yin & Lixing Yang & Andrea D’Ariano & Tao Tang & Ziyou Gao, 2022. "Integrated Backup Rolling Stock Allocation and Timetable Rescheduling with Uncertain Time-Variant Passenger Demand Under Disruptive Events," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3234-3258, November.
    16. Zuzana Nedělková & Peter Lindroth & Michael Patriksson & Ann-Brith Strömberg, 2018. "Efficient solution of many instances of a simulation-based optimization problem utilizing a partition of the decision space," Annals of Operations Research, Springer, vol. 265(1), pages 93-118, June.
    17. Hiroshi Haramoto & Makoto Matsumoto & Takuji Nishimura & François Panneton & Pierre L'Ecuyer, 2008. "Efficient Jump Ahead for (F-openface) 2 -Linear Random Number Generators," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 385-390, August.
    18. Zhou, Tianli & Fields, Evan & Osorio, Carolina, 2023. "A data-driven discrete simulation-based optimization algorithm for car-sharing service design," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    19. Tang, Hui-Chin, 2005. "Reverse multiple recursive random number generators," European Journal of Operational Research, Elsevier, vol. 164(2), pages 402-405, July.
    20. Yin, Jiateng & Pu, Fan & Yang, Lixing & D’Ariano, Andrea & Wang, Zhouhong, 2023. "Integrated optimization of rolling stock allocation and train timetables for urban rail transit networks: A benders decomposition approach," Transportation Research Part B: Methodological, Elsevier, vol. 176(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:32:y:4:i:2020:p:1101-1108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.