IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v19y2013i2p77-105n3.html
   My bibliography  Save this article

Parallel pseudo-random number generators: A derivative pricing perspective with the Heston stochastic volatility model

Author

Listed:
  • Mascagni Michael

    (Departments of Computer Science, Mathematics & Scientific Computing, and Graduate Program in Molecular Biophysics, Florida State University, Tallahassee, FL 32308-4530, USA)

  • Hin Lin-Yee

    (Department of Mathematics & Statistics, Curtin University of Technology, Bentley, WA 6102, Australia)

Abstract

Accuracy and precision of parallel Monte Carlo (MC) simulations may be impaired by the presence of intra-thread and inter-thread correlations depending on the parallel pseudo-random number generators (PPRNGs) used. While necessary, statistical tests alone are insufficient to ensure the absence of these correlations that can manifest as bias and variance to a extent in different applications. Therefore, application-based tests designed to mimic real-life MC scenarios may uncover them in the intended applications. The results of an application-based test simulating the Heston stochastic volatility model, a widely used pricing framework, is reported in order to compare the accuracy and precision profiles among four popular libraries of scalable pseudo-random number generators implementing sequence division (trng and RngSteam), parameterization (sprng) and counter-based (Random123) strategies. All pseudo-random number generators assessed demonstrate similar standard-error of mean profiles. However, the bias profiles are more varied albeit comparable. PPRNGs demonstrating the smallest bias profiles in absolute and relative terms are yarn4 from TRNG, mlfg from SPRNG, as well as Threefry2x64 from Random123 for truncated Euler scheme, and mrg5s from TRNG and lfg from SPRNG for the quadratic exponent scheme. It is recommended that, when selecting a PPRNG for parallel MC simulation from a set of competing PPRNGs with comparable bias and standard error of mean profiles in absolute terms, the PPRNG associated with the smallest parallel-sequential bias difference should be used as it reflects the smallest intra-thread correlation introduced by parallelization.

Suggested Citation

  • Mascagni Michael & Hin Lin-Yee, 2013. "Parallel pseudo-random number generators: A derivative pricing perspective with the Heston stochastic volatility model," Monte Carlo Methods and Applications, De Gruyter, vol. 19(2), pages 77-105, July.
  • Handle: RePEc:bpj:mcmeap:v:19:y:2013:i:2:p:77-105:n:3
    DOI: 10.1515/mcma-2013-0006
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/mcma-2013-0006
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/mcma-2013-0006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pierre L'Ecuyer & Richard Simard & E. Jack Chen & W. David Kelton, 2002. "An Object-Oriented Random-Number Package with Many Long Streams and Substreams," Operations Research, INFORMS, vol. 50(6), pages 1073-1075, December.
    2. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    3. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    4. Roger Lord & Remmert Koekkoek & Dick Van Dijk, 2010. "A comparison of biased simulation schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 177-194.
    5. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    6. Mark Broadie & Özgür Kaya, 2006. "Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes," Operations Research, INFORMS, vol. 54(2), pages 217-231, April.
    7. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    8. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    9. Hellekalek, P., 1998. "Good random number generators are (not so) easy to find," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 46(5), pages 485-505.
    10. Christian Kahl & Peter Jackel, 2006. "Fast strong approximation Monte Carlo schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 6(6), pages 513-536.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bégin Jean-François & Bédard Mylène & Gaillardetz Patrice, 2015. "Simulating from the Heston model: A gamma approximation scheme," Monte Carlo Methods and Applications, De Gruyter, vol. 21(3), pages 205-231, September.
    2. Mariano González-Sánchez & Eva M. Ibáñez Jiménez & Ana I. Segovia San Juan, 2022. "Market and model risks: a feasible joint estimate methodology," Risk Management, Palgrave Macmillan, vol. 24(3), pages 187-213, September.
    3. Paul Glasserman & Kyoung-Kuk Kim, 2011. "Gamma expansion of the Heston stochastic volatility model," Finance and Stochastics, Springer, vol. 15(2), pages 267-296, June.
    4. Leunga Njike, Charles Guy & Hainaut, Donatien, 2024. "Affine Heston model style with self-exciting jumps and long memory," LIDAM Discussion Papers ISBA 2024001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
    6. Duffie, Darrell, 2005. "Credit risk modeling with affine processes," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2751-2802, November.
    7. Robert Azencott & Yutheeka Gadhyan & Roland Glowinski, 2014. "Option Pricing Accuracy for Estimated Heston Models," Papers 1404.4014, arXiv.org, revised Jul 2015.
    8. Roger Lord & Remmert Koekkoek & Dick Van Dijk, 2010. "A comparison of biased simulation schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 177-194.
    9. João Pedro Vidal Nunes & Tiago Ramalho Viegas Alcaria, 2016. "Valuation of forward start options under affine jump-diffusion models," Quantitative Finance, Taylor & Francis Journals, vol. 16(5), pages 727-747, May.
    10. Zhu, Song-Ping & Lian, Guang-Hua, 2015. "Pricing forward-start variance swaps with stochastic volatility," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 920-933.
    11. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    12. Ricardo Crisóstomo, 2017. "Speed and biases of Fourier-based pricing choices: Analysis of the Bates and Asymmetric Variance Gamma models," CNMV Working Papers CNMV Working Papers no. 6, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.
    13. Roman Horsky & Tilman Sayer, 2015. "Joining The Heston And A Three-Factor Short Rate Model: A Closed-Form Approach," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(08), pages 1-17, December.
    14. Ying Chang & Yiming Wang & Sumei Zhang, 2021. "Option Pricing under Double Heston Jump-Diffusion Model with Approximative Fractional Stochastic Volatility," Mathematics, MDPI, vol. 9(2), pages 1-10, January.
    15. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    16. Corsaro, Stefania & Kyriakou, Ioannis & Marazzina, Daniele & Marino, Zelda, 2019. "A general framework for pricing Asian options under stochastic volatility on parallel architectures," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1082-1095.
    17. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    18. Michael A. Kouritzin, 2016. "Explicit Heston Solutions and Stochastic Approximation for Path-dependent Option Pricing," Papers 1608.02028, arXiv.org, revised Apr 2018.
    19. Moreno, Manuel & Serrano, Pedro & Stute, Winfried, 2011. "Statistical properties and economic implications of jump-diffusion processes with shot-noise effects," European Journal of Operational Research, Elsevier, vol. 214(3), pages 656-664, November.
    20. Bates, David S., 2003. "Empirical option pricing: a retrospection," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 387-404.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:19:y:2013:i:2:p:77-105:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.