IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0003215.html
   My bibliography  Save this article

The Evolving Transcriptome of Head and Neck Squamous Cell Carcinoma: A Systematic Review

Author

Listed:
  • Yau-Hua Yu
  • Hsu-Ko Kuo
  • Kuo-Wei Chang

Abstract

Background: Numerous studies were performed to illuminate mechanisms of tumorigenesis and metastases from gene expression profiles of Head and Neck Squamous Cell Carcinoma (HNSCC). The objective of this review is to conduct a network-based meta-analysis to identify the underlying biological signatures of the HNSCC transcriptome. Methods and Findings: We included 63 HNSCC transcriptomic studies into three specific categories of comparisons: Pre, premalignant lesions v.s. normal; TvN, primary tumors v.s. normal; and Meta, metastatic or invasive v.s. primary tumors. Reported genes extracted from the literature were systematically analyzed. Participation of differential gene activities across three progressive stages deciphered the evolving nature of HNSCC. In total, 1442 genes were verified, i.e. reported at least twice, with ECM1, EMP1, CXCL10 and POSTN shown to be highly reported across all three stages. Knowledge-based networks of the HNSCC transcriptome were constructed, demonstrating integrin signaling and antigen presentation pathways as highly enriched. Notably, functional estimates derived from topological characteristics of integrin signaling networks identified such important genes as ITGA3 and ITGA5, which were supported by findings of invasiveness in vitro [1]. Moreover, we computed genome-wide probabilities of reporting differential gene activities for the Pre, TvN, and Meta stages, respectively. Results highlighted chromosomal regions of 6p21, 19p13 and 19q13, where genomic alterations were shown to be correlated with the nodal status of HNSCC [2]. Conclusions: By means of a systems-biology approach via network-based meta-analyses, we provided a deeper insight into the evolving nature of the HNSCC transcriptome. Enriched canonical signaling pathways, hot-spots of transcriptional profiles across the genome, as well as topologically significant genes derived from network analyses were highlighted for each of the three progressive stages, Pre, TvN, and Meta, respectively.

Suggested Citation

  • Yau-Hua Yu & Hsu-Ko Kuo & Kuo-Wei Chang, 2008. "The Evolving Transcriptome of Head and Neck Squamous Cell Carcinoma: A Systematic Review," PLOS ONE, Public Library of Science, vol. 3(9), pages 1-11, September.
  • Handle: RePEc:plo:pone00:0003215
    DOI: 10.1371/journal.pone.0003215
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0003215
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0003215&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0003215?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jing-Dong J. Han & Nicolas Bertin & Tong Hao & Debra S. Goldberg & Gabriel F. Berriz & Lan V. Zhang & Denis Dupuy & Albertha J. M. Walhout & Michael E. Cusick & Frederick P. Roth & Marc Vidal, 2004. "Erratum: Evidence for dynamically organized modularity in the yeast protein–protein interaction network," Nature, Nature, vol. 430(6997), pages 380-380, July.
    2. Jing-Dong J. Han & Nicolas Bertin & Tong Hao & Debra S. Goldberg & Gabriel F. Berriz & Lan V. Zhang & Denis Dupuy & Albertha J. M. Walhout & Michael E. Cusick & Frederick P. Roth & Marc Vidal, 2004. "Evidence for dynamically organized modularity in the yeast protein–protein interaction network," Nature, Nature, vol. 430(6995), pages 88-93, July.
    3. Steve E. Calvano & Wenzhong Xiao & Daniel R. Richards & Ramon M. Felciano & Henry V. Baker & Raymond J. Cho & Richard O. Chen & Bernard H. Brownstein & J. Perren Cobb & S. Kevin Tschoeke & Carol Mille, 2005. "A network-based analysis of systemic inflammation in humans," Nature, Nature, vol. 437(7061), pages 1032-1037, October.
    4. Roger Guimerà & Luís A. Nunes Amaral, 2005. "Functional cartography of complex metabolic networks," Nature, Nature, vol. 433(7028), pages 895-900, February.
    5. Catherine M. Koebel & William Vermi & Jeremy B. Swann & Nadeen Zerafa & Scott J. Rodig & Lloyd J. Old & Mark J. Smyth & Robert D. Schreiber, 2007. "Adaptive immunity maintains occult cancer in an equilibrium state," Nature, Nature, vol. 450(7171), pages 903-907, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yuerong & Marshall, Stephen & Manley, Ed, 2021. "Understanding the roles of rail stations: Insights from network approaches in the London metropolitan area," Journal of Transport Geography, Elsevier, vol. 94(C).
    2. Pan-Jun Kim & Nathan D Price, 2011. "Genetic Co-Occurrence Network across Sequenced Microbes," PLOS Computational Biology, Public Library of Science, vol. 7(12), pages 1-9, December.
    3. Franke, R., 2016. "CHIMERA: Top-down model for hierarchical, overlapping and directed cluster structures in directed and weighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 384-408.
    4. Patrick C F Buchholz & Catharina Zeil & Jürgen Pleiss, 2018. "The scale-free nature of protein sequence space," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-14, August.
    5. Seyed Yahya Anvar & Allan Tucker & Veronica Vinciotti & Andrea Venema & Gert-Jan B van Ommen & Silvere M van der Maarel & Vered Raz & Peter A C ‘t Hoen, 2011. "Interspecies Translation of Disease Networks Increases Robustness and Predictive Accuracy," PLOS Computational Biology, Public Library of Science, vol. 7(11), pages 1-14, November.
    6. Hou, Bonan & Yao, Yiping & Liao, Dongsheng, 2012. "Identifying all-around nodes for spreading dynamics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 4012-4017.
    7. Peter Langfelder & Paul S Mischel & Steve Horvath, 2013. "When Is Hub Gene Selection Better than Standard Meta-Analysis?," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-16, April.
    8. Fabio Cumbo & Paola Paci & Daniele Santoni & Luisa Di Paola & Alessandro Giuliani, 2014. "GIANT: A Cytoscape Plugin for Modular Networks," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-7, October.
    9. Weijiang Li & Hiroyuki Kurata, 2008. "Visualizing Global Properties of Large Complex Networks," PLOS ONE, Public Library of Science, vol. 3(7), pages 1-4, July.
    10. Changki Hong & Jeewon Hwang & Kwang-Hyun Cho & Insik Shin, 2015. "An Efficient Steady-State Analysis Method for Large Boolean Networks with High Maximum Node Connectivity," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-19, December.
    11. Seah Choon Sen & Shahreen Kasim & Mohd Farhan Md Fudzee & Rusli Abdullah & Rodziah Atan, 2017. "Random Walk From Different Perspective," Acta Electronica Malaysia (AEM), Zibeline International Publishing, vol. 1(2), pages 26-27, November.
    12. Chrysafis Vogiatzis & Mustafa Can Camur, 2019. "Identification of Essential Proteins Using Induced Stars in Protein–Protein Interaction Networks," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 703-718, October.
    13. Gabor I Simko & Peter Csermely, 2013. "Nodes Having a Major Influence to Break Cooperation Define a Novel Centrality Measure: Game Centrality," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-8, June.
    14. Shiwei Lu & Yaping Huang & Zhiyuan Zhao & Xiping Yang, 2018. "Exploring the Hierarchical Structure of China’s Railway Network from 2008 to 2017," Sustainability, MDPI, vol. 10(9), pages 1-15, September.
    15. Luis P Fernandes & Alessia Annibale & Jens Kleinjung & Anthony C C Coolen & Franca Fraternali, 2010. "Protein Networks Reveal Detection Bias and Species Consistency When Analysed by Information-Theoretic Methods," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-14, August.
    16. Sun, Yeran & Mburu, Lucy & Wang, Shaohua, 2016. "Analysis of community properties and node properties to understand the structure of the bus transport network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 523-530.
    17. Amir Lakizadeh & Saeed Jalili, 2016. "BiCAMWI: A Genetic-Based Biclustering Algorithm for Detecting Dynamic Protein Complexes," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-16, July.
    18. D.S. Baek & T.H. Chung & Y.H. Kim & S.K. Oh & K.M. So & C. Park, 2017. "Changes in regulatory T cells in dogs with B-cell lymphoma and association with clinical tumour stage," Veterinární medicína, Czech Academy of Agricultural Sciences, vol. 62(12), pages 647-653.
    19. Minchao Wang & Wu Zhang & Wang Ding & Dongbo Dai & Huiran Zhang & Hao Xie & Luonan Chen & Yike Guo & Jiang Xie, 2014. "Parallel Clustering Algorithm for Large-Scale Biological Data Sets," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-9, April.
    20. Tinic, Murat & Sensoy, Ahmet & Demir, Muge & Nguyen, Duc Khuong, 2020. "Broker Network Connectivity and the Cross-Section of Expected Stock Returns," MPRA Paper 104719, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0003215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.