IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0145734.html
   My bibliography  Save this article

An Efficient Steady-State Analysis Method for Large Boolean Networks with High Maximum Node Connectivity

Author

Listed:
  • Changki Hong
  • Jeewon Hwang
  • Kwang-Hyun Cho
  • Insik Shin

Abstract

Boolean networks have been widely used to model biological processes lacking detailed kinetic information. Despite their simplicity, Boolean network dynamics can still capture some important features of biological systems such as stable cell phenotypes represented by steady states. For small models, steady states can be determined through exhaustive enumeration of all state transitions. As the number of nodes increases, however, the state space grows exponentially thus making it difficult to find steady states. Over the last several decades, many studies have addressed how to handle such a state space explosion. Recently, increasing attention has been paid to a satisfiability solving algorithm due to its potential scalability to handle large networks. Meanwhile, there still lies a problem in the case of large models with high maximum node connectivity where the satisfiability solving algorithm is known to be computationally intractable. To address the problem, this paper presents a new partitioning-based method that breaks down a given network into smaller subnetworks. Steady states of each subnetworks are identified by independently applying the satisfiability solving algorithm. Then, they are combined to construct the steady states of the overall network. To efficiently apply the satisfiability solving algorithm to each subnetwork, it is crucial to find the best partition of the network. In this paper, we propose a method that divides each subnetwork to be smallest in size and lowest in maximum node connectivity. This minimizes the total cost of finding all steady states in entire subnetworks. The proposed algorithm is compared with others for steady states identification through a number of simulations on both published small models and randomly generated large models with differing maximum node connectivities. The simulation results show that our method can scale up to several hundreds of nodes even for Boolean networks with high maximum node connectivity. The algorithm is implemented and available at http://cps.kaist.ac.kr/∼ckhong/tools/download/PAD.tar.gz.

Suggested Citation

  • Changki Hong & Jeewon Hwang & Kwang-Hyun Cho & Insik Shin, 2015. "An Efficient Steady-State Analysis Method for Large Boolean Networks with High Maximum Node Connectivity," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-19, December.
  • Handle: RePEc:plo:pone00:0145734
    DOI: 10.1371/journal.pone.0145734
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0145734
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0145734&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0145734?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jing-Dong J. Han & Nicolas Bertin & Tong Hao & Debra S. Goldberg & Gabriel F. Berriz & Lan V. Zhang & Denis Dupuy & Albertha J. M. Walhout & Michael E. Cusick & Frederick P. Roth & Marc Vidal, 2004. "Erratum: Evidence for dynamically organized modularity in the yeast protein–protein interaction network," Nature, Nature, vol. 430(6997), pages 380-380, July.
    2. Desheng Zheng & Guowu Yang & Xiaoyu Li & Zhicai Wang & Feng Liu & Lei He, 2013. "An Efficient Algorithm for Computing Attractors of Synchronous And Asynchronous Boolean Networks," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-7, April.
    3. Jing-Dong J. Han & Nicolas Bertin & Tong Hao & Debra S. Goldberg & Gabriel F. Berriz & Lan V. Zhang & Denis Dupuy & Albertha J. M. Walhout & Michael E. Cusick & Frederick P. Roth & Marc Vidal, 2004. "Evidence for dynamically organized modularity in the yeast protein–protein interaction network," Nature, Nature, vol. 430(6995), pages 88-93, July.
    4. Kurt A. Richardson, 2005. "Simplifying Boolean Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 8(04), pages 365-381.
    5. Wensheng Guo & Guowu Yang & Wei Wu & Lei He & Mingyu Sun, 2014. "A Parallel Attractor Finding Algorithm Based on Boolean Satisfiability for Genetic Regulatory Networks," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-10, April.
    6. Editors The, 2007. "From the Editors," Basic Income Studies, De Gruyter, vol. 2(1), pages 1-5, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan-Jun Kim & Nathan D Price, 2011. "Genetic Co-Occurrence Network across Sequenced Microbes," PLOS Computational Biology, Public Library of Science, vol. 7(12), pages 1-9, December.
    2. Franke, R., 2016. "CHIMERA: Top-down model for hierarchical, overlapping and directed cluster structures in directed and weighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 384-408.
    3. Patrick C F Buchholz & Catharina Zeil & Jürgen Pleiss, 2018. "The scale-free nature of protein sequence space," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-14, August.
    4. Seyed Yahya Anvar & Allan Tucker & Veronica Vinciotti & Andrea Venema & Gert-Jan B van Ommen & Silvere M van der Maarel & Vered Raz & Peter A C ‘t Hoen, 2011. "Interspecies Translation of Disease Networks Increases Robustness and Predictive Accuracy," PLOS Computational Biology, Public Library of Science, vol. 7(11), pages 1-14, November.
    5. Hou, Bonan & Yao, Yiping & Liao, Dongsheng, 2012. "Identifying all-around nodes for spreading dynamics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 4012-4017.
    6. Pedro J. Rivera Torres & E. I. Serrano Mercado & Luis Anido Rifón, 2018. "Probabilistic Boolean network modeling of an industrial machine," Journal of Intelligent Manufacturing, Springer, vol. 29(4), pages 875-890, April.
    7. Peter Langfelder & Paul S Mischel & Steve Horvath, 2013. "When Is Hub Gene Selection Better than Standard Meta-Analysis?," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-16, April.
    8. Zhang, Yuerong & Marshall, Stephen & Manley, Ed, 2021. "Understanding the roles of rail stations: Insights from network approaches in the London metropolitan area," Journal of Transport Geography, Elsevier, vol. 94(C).
    9. Fabio Cumbo & Paola Paci & Daniele Santoni & Luisa Di Paola & Alessandro Giuliani, 2014. "GIANT: A Cytoscape Plugin for Modular Networks," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-7, October.
    10. Weijiang Li & Hiroyuki Kurata, 2008. "Visualizing Global Properties of Large Complex Networks," PLOS ONE, Public Library of Science, vol. 3(7), pages 1-4, July.
    11. Yau-Hua Yu & Hsu-Ko Kuo & Kuo-Wei Chang, 2008. "The Evolving Transcriptome of Head and Neck Squamous Cell Carcinoma: A Systematic Review," PLOS ONE, Public Library of Science, vol. 3(9), pages 1-11, September.
    12. Seah Choon Sen & Shahreen Kasim & Mohd Farhan Md Fudzee & Rusli Abdullah & Rodziah Atan, 2017. "Random Walk From Different Perspective," Acta Electronica Malaysia (AEM), Zibeline International Publishing, vol. 1(2), pages 26-27, November.
    13. Chrysafis Vogiatzis & Mustafa Can Camur, 2019. "Identification of Essential Proteins Using Induced Stars in Protein–Protein Interaction Networks," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 703-718, October.
    14. Gabor I Simko & Peter Csermely, 2013. "Nodes Having a Major Influence to Break Cooperation Define a Novel Centrality Measure: Game Centrality," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-8, June.
    15. Shiwei Lu & Yaping Huang & Zhiyuan Zhao & Xiping Yang, 2018. "Exploring the Hierarchical Structure of China’s Railway Network from 2008 to 2017," Sustainability, MDPI, vol. 10(9), pages 1-15, September.
    16. Luis P Fernandes & Alessia Annibale & Jens Kleinjung & Anthony C C Coolen & Franca Fraternali, 2010. "Protein Networks Reveal Detection Bias and Species Consistency When Analysed by Information-Theoretic Methods," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-14, August.
    17. Sun, Yeran & Mburu, Lucy & Wang, Shaohua, 2016. "Analysis of community properties and node properties to understand the structure of the bus transport network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 523-530.
    18. Amir Lakizadeh & Saeed Jalili, 2016. "BiCAMWI: A Genetic-Based Biclustering Algorithm for Detecting Dynamic Protein Complexes," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-16, July.
    19. Eloi Laurent, 2010. "Environmental justice and environmental inequalities: A European perspective," Working Papers hal-01069412, HAL.
    20. Sylvester Ngome Chisika & Chunho Yeom, 2021. "Enhancing Sustainable Management of Public Natural Forests Through Public Private Partnerships in Kenya," SAGE Open, , vol. 11(4), pages 21582440211, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0145734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.