IDEAS home Printed from https://ideas.repec.org/a/inm/ordeca/v20y2023i3p220-230.html
   My bibliography  Save this article

A Simplified Method for Value of Information Using Constructed Scales

Author

Listed:
  • Michael C. Runge

    (U.S. Geological Survey Eastern Ecological Science Center at the Patuxent Research Refuge, Laurel, Maryland 20708)

  • Clark S. Rushing

    (Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia 30602)

  • James E. Lyons

    (U.S. Geological Survey Eastern Ecological Science Center at the Patuxent Research Refuge, Laurel, Maryland 20708)

  • Madeleine A. Rubenstein

    (U.S. Geological Survey, National Climate Adaptation Science Center, Reston, Virginia 20192)

Abstract

The value of information is a central concept in decision analysis, used to quantify how much the expected outcome of a decision would be improved if epistemic uncertainty could be resolved prior to committing to a course of action. One of the challenges, however, in quantitative analysis of the value of information is that the calculations are demanding, especially in requiring predictions of outcomes as a function of alternative actions and sources of uncertainty. However, the concept of value of information is important in early framing of some decisions, before such predictions are available. We propose a novel measure of the value of information based on constructed scales (CVOI), grounded in the algebra of the expected value of perfect information (EVPI), but requiring less of experts and analysts. The CVOI calculation decomposes EVPI into a contribution representing the relevance of the uncertainty to the decision and a contribution representing the magnitude of uncertainty; constructed ratio scales are then proposed for each contribution. We demonstrate the use of CVOI to identify research priorities related to migratory bird management in the face of climate change.

Suggested Citation

  • Michael C. Runge & Clark S. Rushing & James E. Lyons & Madeleine A. Rubenstein, 2023. "A Simplified Method for Value of Information Using Constructed Scales," Decision Analysis, INFORMS, vol. 20(3), pages 220-230, September.
  • Handle: RePEc:inm:ordeca:v:20:y:2023:i:3:p:220-230
    DOI: 10.1287/deca.2023.0474
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/deca.2023.0474
    Download Restriction: no

    File URL: https://libkey.io/10.1287/deca.2023.0474?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hau L. Lee & Kut C. So & Christopher S. Tang, 2000. "The Value of Information Sharing in a Two-Level Supply Chain," Management Science, INFORMS, vol. 46(5), pages 626-643, May.
    2. Myles R. Allen & Peter A. Stott & John F. B. Mitchell & Reiner Schnur & Thomas L. Delworth, 2000. "Quantifying the uncertainty in forecasts of anthropogenic climate change," Nature, Nature, vol. 407(6804), pages 617-620, October.
    3. Andrew Speirs‐Bridge & Fiona Fidler & Marissa McBride & Louisa Flander & Geoff Cumming & Mark Burgman, 2010. "Reducing Overconfidence in the Interval Judgments of Experts," Risk Analysis, John Wiley & Sons, vol. 30(3), pages 512-523, March.
    4. Jeffrey M. Keisler & Zachary A. Collier & Eric Chu & Nina Sinatra & Igor Linkov, 2014. "Value of information analysis: the state of application," Environment Systems and Decisions, Springer, vol. 34(1), pages 3-23, March.
    5. Hanea, A.M. & McBride, M.F. & Burgman, M.A. & Wintle, B.C. & Fidler, F. & Flander, L. & Twardy, C.R. & Manning, B. & Mascaro, S., 2017. "I nvestigate D iscuss E stimate A ggregate for structured expert judgement," International Journal of Forecasting, Elsevier, vol. 33(1), pages 267-279.
    6. James C. Felli & Gordon B. Hazen, 1998. "Sensitivity Analysis and the Expected Value of Perfect Information," Medical Decision Making, , vol. 18(1), pages 95-109, January.
    7. Peck, Stephen C. & Teisberg, Thomas J., 1993. "Global warming uncertainties and the value of information: an analysis using CETA," Resource and Energy Economics, Elsevier, vol. 15(1), pages 71-97, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ashley B. C. Goode & Erin Rivenbark & Jessica A. Gilbert & Conor P. McGowan, 2023. "Prioritization of Species Status Assessments for Decision Support," Decision Analysis, INFORMS, vol. 20(4), pages 311-325, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emanuele Borgonovo & Alessandra Cillo & Curtis L. Smith, 2018. "On the Relationship between Safety and Decision Significance," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1541-1558, August.
    2. Emanuele Borgonovo & Alessandra Cillo, 2017. "Deciding with Thresholds: Importance Measures and Value of Information," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 1828-1848, October.
    3. Haag, Fridolin & Chennu, Arjun, 2023. "Assessing whether decisions are more sensitive to preference or prediction uncertainty with a value of information approach," Omega, Elsevier, vol. 121(C).
    4. repec:cup:judgdm:v:15:y:2020:i:5:p:783-797 is not listed on IDEAS
    5. David R. Mandel & Robert N. Collins & Evan F. Risko & Jonathan A. Fugelsang, 2020. "Effect of confidence interval construction on judgment accuracy," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 15(5), pages 783-797, September.
    6. Mercedes Boncompte Pons & María del Mar Guerrero Manzano, 2024. "The value of perfect information for the problem: a sensitivity analysis," Environment Systems and Decisions, Springer, vol. 44(4), pages 980-993, December.
    7. Borgonovo, Emanuele & Hazen, Gordon B. & Jose, Victor Richmond R. & Plischke, Elmar, 2021. "Probabilistic sensitivity measures as information value," European Journal of Operational Research, Elsevier, vol. 289(2), pages 595-610.
    8. Xiaoyi Liu & Jonghyun Lee & Peter Kitanidis & Jack Parker & Ungtae Kim, 2012. "Value of Information as a Context-Specific Measure of Uncertainty in Groundwater Remediation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1513-1535, April.
    9. Pastore, Erica & Alfieri, Arianna & Zotteri, Giulio, 2019. "An empirical investigation on the antecedents of the bullwhip effect: Evidence from the spare parts industry," International Journal of Production Economics, Elsevier, vol. 209(C), pages 121-133.
    10. Richard S. J. Tol & In Chang Hwang & Frédéric Reynès, 2012. "The Effect of Learning on Climate Policy under Fat-tailed Uncertainty," Working Paper Series 5312, Department of Economics, University of Sussex Business School.
    11. Tarifa Fernández, Jorge & de Burgos Jiménez, Jerónimo & Céspedes Lorente, José Joaquín, 2018. "Absorptive capacity as a confounder of the process of supply chain integration," MPRA Paper 120125, University Library of Munich, Germany, revised 2018.
    12. Kenneth Gillingham & William D. Nordhaus & David Anthoff & Geoffrey Blanford & Valentina Bosetti & Peter Christensen & Haewon McJeon & John Reilly & Paul Sztorc, 2015. "Modeling Uncertainty in Climate Change: A Multi-Model Comparison," NBER Working Papers 21637, National Bureau of Economic Research, Inc.
    13. Pizer, William A., 1999. "The optimal choice of climate change policy in the presence of uncertainty," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 255-287, August.
    14. Matthias Schmidt & Hermann Held & Elmar Kriegler & Alexander Lorenz, 2013. "Climate Policy Under Uncertain and Heterogeneous Climate Damages," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(1), pages 79-99, January.
    15. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    16. Sohn, So Young & Lim, Michael, 2008. "The effect of forecasting and information sharing in SCM for multi-generation products," European Journal of Operational Research, Elsevier, vol. 186(1), pages 276-287, April.
    17. Ma, Yungao & Wang, Nengmin & He, Zhengwen & Lu, Jizhou & Liang, Huigang, 2015. "Analysis of the bullwhip effect in two parallel supply chains with interacting price-sensitive demands," European Journal of Operational Research, Elsevier, vol. 243(3), pages 815-825.
    18. Fildes, Robert & Goodwin, Paul & Onkal, Dilek, 2015. "Information use in supply chain forecasting," MPRA Paper 66034, University Library of Munich, Germany.
    19. Kembro, Joakim & Näslund, Dag & Olhager, Jan, 2017. "Information sharing across multiple supply chain tiers: A Delphi study on antecedents," International Journal of Production Economics, Elsevier, vol. 193(C), pages 77-86.
    20. Karimi, Majid & Zaerpour, Nima, 2022. "Put your money where your forecast is: Supply chain collaborative forecasting with cost-function-based prediction markets," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1035-1049.
    21. Yiwei Chen & Vivek F. Farias, 2013. "Simple Policies for Dynamic Pricing with Imperfect Forecasts," Operations Research, INFORMS, vol. 61(3), pages 612-624, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ordeca:v:20:y:2023:i:3:p:220-230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.