IDEAS home Printed from https://ideas.repec.org/a/ijf/ijfiec/v15y2010i4p331-350.html
   My bibliography  Save this article

Forecasting financial volatility of the Athens stock exchange daily returns: an application of the asymmetric normal mixture GARCH model

Author

Listed:
  • Anastassios A. Drakos

    (Department of Business Administration, Athens University of Economics and Business, Greece)

  • Georgios P. Kouretas

    (Department of Business Administration, Athens University of Economics and Business, Greece)

  • Leonidas P. Zarangas

    (Department of Finance and Auditing, Technological Educational Institute of Epirus, Greece)

Abstract

In this paper we model the return volatility of stocks traded in the Athens Stock Exchange using alternative GARCH models. We employ daily data for the period January 1998 to November 2008 allowing us to capture possible positive and negative effects that may be due to either contagion or idiosyncratic sources. The econometric analysis is based on the estimation of a class of five GARCH models under alternative assumptions with respect to the error distribution. The main findings of our analysis are: first, based on a battery of diagnostic tests it is shown that the normal mixture asymmetric GARCH (NM-AGARCH) models perform better in modeling the volatility of stock returns. Second, it is shown that with the use of the Kupiec's tests for in-sample and out-of-sample forecasting performance the evidence is mixed as the choice of the appropriate volatility model depends on the trading position under consideration. Third, at the 99% confidence interval the NM-AGARCH model with skewed Student-distribution outperforms all other competing models both for in-sample and out-of-sample forecasting performance. This increase in predictive performance for higher confidence intervals of the NM-AGARCH model with skewed Student-distribution makes this specification consistent with the requirements of the Basel II agreement. Copyright © 2010 John Wiley & Sons, Ltd.

Suggested Citation

  • Anastassios A. Drakos & Georgios P. Kouretas & Leonidas P. Zarangas, 2010. "Forecasting financial volatility of the Athens stock exchange daily returns: an application of the asymmetric normal mixture GARCH model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 331-350.
  • Handle: RePEc:ijf:ijfiec:v:15:y:2010:i:4:p:331-350
    DOI: 10.1002/ijfe.407
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/ijfe.407
    File Function: Link to full text; subscription required
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ijfe.407?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
    2. Serena Ng & Pierre Perron, 2001. "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
    3. Pierre Giot & Sébastien Laurent, 2003. "Value-at-risk for long and short trading positions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(6), pages 641-663.
    4. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    5. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 631-653.
    6. Christoffersen, Peter & Heston, Steve & Jacobs, Kris, 2006. "Option valuation with conditional skewness," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 253-284.
    7. Sephton, Peter S., 1995. "Response surface estimates of the KPSS stationarity test," Economics Letters, Elsevier, vol. 47(3-4), pages 255-261, March.
    8. Carol Alexandra & Emese Lazar, 2005. "Asymmetries and Volatility Regimes in the European Equity Markets," ICMA Centre Discussion Papers in Finance icma-dp2005-14, Henley Business School, University of Reading.
    9. Kjersti Aas & Ingrid Hobaek Haff, 2006. "The Generalized Hyperbolic Skew Student's t-Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 4(2), pages 275-309.
    10. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    11. Fielitz, Bruce D., 1971. "Stationarity of Random Data: Some Implications for the Distribution of Stock Price Changes," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 6(3), pages 1025-1034, June.
    12. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    13. Benoit Mandelbrot, 1967. "The Variation of Some Other Speculative Prices," The Journal of Business, University of Chicago Press, vol. 40, pages 393-393.
    14. Markus Haas, 2004. "Mixed Normal Conditional Heteroskedasticity," Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 211-250.
    15. Elliott, Graham, 1999. "Efficient Tests for a Unit Root When the Initial Observation Is Drawn from Its Unconditional Distribution," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(3), pages 767-783, August.
    16. E. Dockery & M. G. Kavussanos, 1996. "Testing the efficient market hypothesis using panel data, with application to the Athens stock market," Applied Economics Letters, Taylor & Francis Journals, vol. 3(2), pages 121-123.
    17. M.J.B. Hall, 1996. "The amendment to the capital accord to incorporate market risk," BNL Quarterly Review, Banca Nazionale del Lavoro, vol. 49(197), pages 271-277.
    18. Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
    19. Manolis Kavussanos & Everton Dockery, 2001. "A multivariate test for stock market efficiency: the case of ASE," Applied Financial Economics, Taylor & Francis Journals, vol. 11(5), pages 573-579.
    20. Stilianos Fountas & Konstantinos N. Segredakis, 1999. "Emerging Stock Markets Return Seasonalities: the January Effect and the Tax-Loss Selling Hypothesis," Working Papers 37, National University of Ireland Galway, Department of Economics, revised 1999.
    21. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    22. John Drzik, 2005. "New Directions in Risk Management," Journal of Financial Econometrics, Oxford University Press, vol. 3(1), pages 26-36.
    23. Carol Alexandra & Emese Lazar, 2004. "The Equity Index Skew, Market Crashes and Asymmetric Normal Mixture GARCH," ICMA Centre Discussion Papers in Finance icma-dp2004-13, Henley Business School, University of Reading.
    24. Alexakis, Panayotis & Petrakis, Panayotis, 1991. "Analysing stock market behaviour in a small capital market," Journal of Banking & Finance, Elsevier, vol. 15(3), pages 471-483, June.
    25. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    26. Badescu Alex & Kulperger Reg & Lazar Emese, 2008. "Option Valuation with Normal Mixture GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(2), pages 1-42, May.
    27. Tang, Ta-Lun & Shieh, Shwu-Jane, 2006. "Long memory in stock index futures markets: A value-at-risk approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 437-448.
    28. Gregorios Siourounis, 2002. "Modelling volatility and testing for efficiency in emerging capital markets: the case of the Athens stock exchange," Applied Financial Economics, Taylor & Francis Journals, vol. 12(1), pages 47-55.
    29. Emese Lazar & Carol Alexander, 2006. "Normal mixture GARCH(1,1): applications to exchange rate modelling," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 307-336.
    30. Carol Alexander, 2005. "The Present and Future of Financial Risk Management," Journal of Financial Econometrics, Oxford University Press, vol. 3(1), pages 3-25.
    31. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    32. K. Newey, Whitney, 1985. "Generalized method of moments specification testing," Journal of Econometrics, Elsevier, vol. 29(3), pages 229-256, September.
    33. George Leledakis & Ian Davidson & George Karathanassis, 2003. "Cross-sectional estimation of stock returns in small markets: The case of the Athens Stock Exchange," Applied Financial Economics, Taylor & Francis Journals, vol. 13(6), pages 413-426.
    34. Bera, Anil K & Higgins, Matthew L, 1993. "ARCH Models: Properties, Estimation and Testing," Journal of Economic Surveys, Wiley Blackwell, vol. 7(4), pages 305-366, December.
    35. Carol Alexandra & Emese Lazar, 2003. "Symmetric Normal Mixture GARCH," ICMA Centre Discussion Papers in Finance icma-dp2003-09, Henley Business School, University of Reading.
    36. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    37. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    38. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    39. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    40. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    41. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    42. Lars Forsberg & Tim Bollerslev, 2002. "Bridging the gap between the distribution of realized (ECU) volatility and ARCH modelling (of the Euro): the GARCH-NIG model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 535-548.
    43. Nicholas Apergis & Sophia Eleptheriou, 2001. "Stock returns and volatility: Evidence from the Athens Stock market index," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 25(1), pages 50-61, March.
    44. Panayiotis Diamandis & Anastassios Drakos & Argyrios Volis, 2007. "The impact of stock incremental information on the volatility of the Athens stock exchange," Applied Financial Economics, Taylor & Francis Journals, vol. 17(5), pages 413-424.
    45. Bams, Dennis & Lehnert, Thorsten & Wolff, Christian C.P., 2005. "An evaluation framework for alternative VaR-models," Journal of International Money and Finance, Elsevier, vol. 24(6), pages 944-958, October.
    46. S»bastien Laurent and Jean-Philippe Peters, 2001. "G@RCH 2.0: An Ox Package for Estimating and Forecasting Various ARCH Models," Computing in Economics and Finance 2001 123, Society for Computational Economics.
    47. Susan Thomas & Mandira Sarma & Ajay Shah, 2003. "Selection of Value-at-Risk models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(4), pages 337-358.
    48. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. BOUSALAM, Issam & HAMZAOUI, Moustapha, 2016. "Impact of Ethical Screening on Risk and Returns: the Case of Constructed Moroccan Islamic Stock Indexes," MPRA Paper 68979, University Library of Munich, Germany.
    2. Rounaghi, Mohammad Mahdi & Nassir Zadeh, Farzaneh, 2016. "Investigation of market efficiency and Financial Stability between S&P 500 and London Stock Exchange: Monthly and yearly Forecasting of Time Series Stock Returns using ARMA model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 10-21.
    3. Nahida Akter & Ashadun Nobi, 2018. "Investigation of the Financial Stability of S&P 500 Using Realized Volatility and Stock Returns Distribution," JRFM, MDPI, vol. 11(2), pages 1-10, April.
    4. Mahdi Moradi & Mehdi Jabbari Nooghabi & Mohammad Mahdi Rounaghi, 2021. "Investigation of fractal market hypothesis and forecasting time series stock returns for Tehran Stock Exchange and London Stock Exchange," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 662-678, January.
    5. Saralees Nadarajah & Emmanuel Afuecheta & Stephen Chan, 2015. "GARCH modeling of five popular commodities," Empirical Economics, Springer, vol. 48(4), pages 1691-1712, June.
    6. Stavros Stavroyiannis & Leonidas Zarangas, 2013. "Out of Sample Value-at-Risk and Backtesting with the Standardized Pearson Type-IV Skewed Distribution," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 60(2), pages 231-247, April.
    7. Chiu, Yen-Chen & Chuang, I-Yuan, 2016. "The performance of the switching forecast model of value-at-risk in the Asian stock markets," Finance Research Letters, Elsevier, vol. 18(C), pages 43-51.
    8. Ekpeyong, Paul, 2023. "Analysis of the dynamic of inflation process in Nigeria: An application of GARCH modelling," MPRA Paper 118128, University Library of Munich, Germany.
    9. Cifter, Atilla, 2012. "Volatility Forecasting with Asymmetric Normal Mixture Garch Model: Evidence from South Africa," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 127-142, June.
    10. Dimitrios P. Louzis & Spyros Xanthopoulos‐Sisinis & Apostolos P. Refenes, 2013. "The Role of High‐Frequency Intra‐daily Data, Daily Range and Implied Volatility in Multi‐period Value‐at‐Risk Forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 561-576, September.
    11. Vítor Manuel de Sousa Gabriel & David Rodeiro‐Pazos, 2018. "Do Short‐ and Long‐Term Environmental Investments Follow the Same Path?," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 25(1), pages 14-28, January.
    12. Stavroyiannis, S. & Makris, I. & Nikolaidis, V. & Zarangas, L., 2012. "Econometric modeling and value-at-risk using the Pearson type-IV distribution," International Review of Financial Analysis, Elsevier, vol. 22(C), pages 10-17.
    13. Dieter Smeets, 2016. "Financial Contagion During the European Sovereign Debt Crisis," Journal of Economic and Financial Studies (JEFS), LAR Center Press, vol. 4(2), pages 46-59, April.
    14. Vortelinos, Dimitrios I., 2015. "The Greek equity market in European equity portfolios," Economic Modelling, Elsevier, vol. 49(C), pages 144-153.
    15. Gabriel, Vítor, 2018. "Environmentally sustainable investment: Dynamics between global thematic indices," Cuadernos de Gestión, Universidad del País Vasco - Instituto de Economía Aplicada a la Empresa (IEAE).
    16. Dejan Živkov & Slavica Manić & Ivan Pavkov, 2022. "Nonlinear examination of the ‘Heat Wave’ and ‘Meteor Shower’ effects between spot and futures markets of the precious metals," Empirical Economics, Springer, vol. 63(2), pages 1109-1134, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panayiotis Diamandis & Anastassios Drakos & Argyrios Volis, 2007. "The impact of stock incremental information on the volatility of the Athens stock exchange," Applied Financial Economics, Taylor & Francis Journals, vol. 17(5), pages 413-424.
    2. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    3. Eleni Constantinou & Robert Georgiades & Avo Kazandjian & George Kouretas, 2005. "Mean and variance causality between the Cyprus Stock Exchange and major equity markets," Working Papers 0501, University of Crete, Department of Economics.
    4. Xekalaki, Evdokia & Degiannakis, Stavros, 2005. "Evaluating volatility forecasts in option pricing in the context of a simulated options market," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 611-629, April.
    5. Stavroyiannis, S. & Makris, I. & Nikolaidis, V. & Zarangas, L., 2012. "Econometric modeling and value-at-risk using the Pearson type-IV distribution," International Review of Financial Analysis, Elsevier, vol. 22(C), pages 10-17.
    6. Carol Alexander & Emese Lazar, 2009. "Modelling Regime‐Specific Stock Price Volatility," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(6), pages 761-797, December.
    7. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    8. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
    9. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    10. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    11. Slim, Skander & Koubaa, Yosra & BenSaïda, Ahmed, 2017. "Value-at-Risk under Lévy GARCH models: Evidence from global stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 46(C), pages 30-53.
    12. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Issler, João Victor, 1999. "Estimating and forecasting the volatility of Brazilian finance series using arch models (Preliminary Version)," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 347, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    14. Aurea Grané & Helena Veiga, 2012. "Asymmetry, realised volatility and stock return risk estimates," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 11(2), pages 147-164, August.
    15. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    16. Timotheos Angelidis & Stavros Degiannakis, 2007. "Backtesting VaR Models: An Expected Shortfall Approach," Working Papers 0701, University of Crete, Department of Economics.
    17. Bali, Turan G. & Mo, Hengyong & Tang, Yi, 2008. "The role of autoregressive conditional skewness and kurtosis in the estimation of conditional VaR," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 269-282, February.
    18. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, September.
    19. Caporale, Guglielmo Maria & Zekokh, Timur, 2019. "Modelling volatility of cryptocurrencies using Markov-Switching GARCH models," Research in International Business and Finance, Elsevier, vol. 48(C), pages 143-155.
    20. Stavros Stavroyiannis & Leonidas Zarangas, 2013. "Out of Sample Value-at-Risk and Backtesting with the Standardized Pearson Type-IV Skewed Distribution," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 60(2), pages 231-247, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ijf:ijfiec:v:15:y:2010:i:4:p:331-350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1076-9307/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.