IDEAS home Printed from https://ideas.repec.org/a/ids/ijbder/v3y2017i2p153-175.html
   My bibliography  Save this article

Modelling VIX and VIX derivatives with reducible diffusions

Author

Listed:
  • Zhigang Tong

Abstract

Starting from the tractable basic diffusion processes, we obtain a one-factor diffusion model for VIX and VIX derivatives through a nonlinear transformation. The new model encompasses many existing models such as square root, 3/2 and logarithmic Ornstein-Uhlenbeck models as special cases. We obtain the analytical solutions for VIX futures and options. We estimate the parameters in the models using the historical data from the time series of VIX index and VIX options and compare this model with some of the nested others. The results indicate that the elasticity of volatility with respect to the underlying VIX is statistically and economically different from 1/2 or 3/2 as specified in the popular models.

Suggested Citation

  • Zhigang Tong, 2017. "Modelling VIX and VIX derivatives with reducible diffusions," International Journal of Bonds and Derivatives, Inderscience Enterprises Ltd, vol. 3(2), pages 153-175.
  • Handle: RePEc:ids:ijbder:v:3:y:2017:i:2:p:153-175
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=84927
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jan Baldeaux & Alexander Badran, 2014. "Consistent Modelling of VIX and Equity Derivatives Using a 3/2 plus Jumps Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 21(4), pages 299-312, September.
    2. Zhigang Tong, 2015. "A regime switching quadratic model for VIX futures valuation," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 4(3/4), pages 246-272.
    3. Eraker, Bjørn & Wang, Jiakou, 2015. "A non-linear dynamic model of the variance risk premium," Journal of Econometrics, Elsevier, vol. 187(2), pages 547-556.
    4. Andrey Itkin & Peter Carr, 2010. "Pricing swaps and options on quadratic variation under stochastic time change models—discrete observations case," Review of Derivatives Research, Springer, vol. 13(2), pages 141-176, July.
    5. Leunglung Chan & Eckhard Platen, 2010. "Exact Pricing and Hedging Formulas of Long Dated Variance Swaps under a $3/2$ Volatility Model," Papers 1007.2968, arXiv.org, revised Jan 2011.
    6. Jones, Christopher S., 2003. "The dynamics of stochastic volatility: evidence from underlying and options markets," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 181-224.
    7. Kaeck, Andreas & Alexander, Carol, 2013. "Continuous-time VIX dynamics: On the role of stochastic volatility of volatility," International Review of Financial Analysis, Elsevier, vol. 28(C), pages 46-56.
    8. Grunbichler, Andreas & Longstaff, Francis A., 1996. "Valuing futures and options on volatility," Journal of Banking & Finance, Elsevier, vol. 20(6), pages 985-1001, July.
    9. Mencía, Javier & Sentana, Enrique, 2013. "Valuation of VIX derivatives," Journal of Financial Economics, Elsevier, vol. 108(2), pages 367-391.
    10. Jérôme Detemple & Carlton Osakwe, 2000. "The Valuation of Volatility Options," Review of Finance, European Finance Association, vol. 4(1), pages 21-50.
    11. Park, Yang-Ho, 2016. "The effects of asymmetric volatility and jumps on the pricing of VIX derivatives," Journal of Econometrics, Elsevier, vol. 192(1), pages 313-328.
    12. Peter Carr & Jian Sun, 2007. "A new approach for option pricing under stochastic volatility," Review of Derivatives Research, Springer, vol. 10(2), pages 87-150, May.
    13. Peter Carr & Vadim Linetsky, 2006. "A jump to default extended CEV model: an application of Bessel processes," Finance and Stochastics, Springer, vol. 10(3), pages 303-330, September.
    14. Gabriel G. Drimus, 2012. "Options on realized variance by transform methods: a non-affine stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 12(11), pages 1679-1694, November.
    15. Dotsis, George & Psychoyios, Dimitris & Skiadopoulos, George, 2007. "An empirical comparison of continuous-time models of implied volatility indices," Journal of Banking & Finance, Elsevier, vol. 31(12), pages 3584-3603, December.
    16. Ruijun Bu & Ludovic Giet & Kaddour Hadri & Michel Lubrano, 2011. "Modeling Multivariate Interest Rates Using Time-Varying Copulas and Reducible Nonlinear Stochastic Differential Equations," Journal of Financial Econometrics, Oxford University Press, vol. 9(1), pages 198-236, Winter.
    17. Brice Dupoyet & Robert T. Daigler & Zhiyao Chen, 2011. "A simplified pricing model for volatility futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 31(4), pages 307-339, April.
    18. Bakshi, Gurdip & Ju, Nengjiu & Ou-Yang, Hui, 2006. "Estimation of continuous-time models with an application to equity volatility dynamics," Journal of Financial Economics, Elsevier, vol. 82(1), pages 227-249, October.
    19. Dimitris Psychoyios & George Dotsis & Raphael Markellos, 2010. "A jump diffusion model for VIX volatility options and futures," Review of Quantitative Finance and Accounting, Springer, vol. 35(3), pages 245-269, October.
    20. Chacko, George & Viceira, Luis M., 2003. "Spectral GMM estimation of continuous-time processes," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 259-292.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhigang Tong & Allen Liu, 2018. "Analytical pricing of discrete arithmetic Asian options under generalized CIR process with time change," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoyu Tan & Chengxiang Wang & Wei Lin & Jin E. Zhang & Shenghong Li & Xuejun Zhao & Zili Zhang, 2021. "The term structure of the VXX option smirk: Pricing VXX option with a two‐factor model and asymmetry jumps," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(4), pages 439-457, April.
    2. Wendong Zheng & Pingping Zeng, 2015. "Pricing timer options and variance derivatives with closed-form partial transform under the 3/2 model," Papers 1504.08136, arXiv.org.
    3. Wendong Zheng & Pingping Zeng, 2016. "Pricing timer options and variance derivatives with closed-form partial transform under the 3/2 model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(5), pages 344-373, September.
    4. Gonzalez-Perez, Maria T., 2015. "Model-free volatility indexes in the financial literature: A review," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 141-159.
    5. Chi Hung Yuen & Wendong Zheng & Yue Kuen Kwok, 2015. "Pricing Exotic Discrete Variance Swaps under the 3/2-Stochastic Volatility Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(5), pages 421-449, November.
    6. Bo Jing & Shenghong Li & Yong Ma, 2020. "Pricing VIX options with volatility clustering," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(6), pages 928-944, June.
    7. Li, Jing & Li, Lingfei & Zhang, Gongqiu, 2017. "Pure jump models for pricing and hedging VIX derivatives," Journal of Economic Dynamics and Control, Elsevier, vol. 74(C), pages 28-55.
    8. Chen Tong & Zhuo Huang & Tianyi Wang, 2022. "Do VIX futures contribute to the valuation of VIX options?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(9), pages 1644-1664, September.
    9. Yoo, Eun Gyu & Yoon, Sun-Joong, 2020. "CBOE VIX and Jump-GARCH option pricing models," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 839-859.
    10. Kaeck, Andreas & Seeger, Norman J., 2020. "VIX derivatives, hedging and vol-of-vol risk," European Journal of Operational Research, Elsevier, vol. 283(2), pages 767-782.
    11. Xingguo Luo & Jin E. Zhang & Wenjun Zhang, 2019. "Instantaneous squared VIX and VIX derivatives," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(10), pages 1193-1213, October.
    12. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
    13. Andrea Barletta & Elisa Nicolato & Stefano Pagliarani, 2019. "The short‐time behavior of VIX‐implied volatilities in a multifactor stochastic volatility framework," Mathematical Finance, Wiley Blackwell, vol. 29(3), pages 928-966, July.
    14. Chen Tong & Zhuo Huang, 2021. "Pricing VIX options with realized volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(8), pages 1180-1200, August.
    15. Kaeck, Andreas & Alexander, Carol, 2013. "Continuous-time VIX dynamics: On the role of stochastic volatility of volatility," International Review of Financial Analysis, Elsevier, vol. 28(C), pages 46-56.
    16. Huang, Hung-Hsi & Lin, Shin-Hung & Wang, Chiu-Ping, 2019. "Reasonable evaluation of VIX options for the Taiwan stock index," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 111-130.
    17. Bao, Qunfang & Li, Shenghong & Gong, Donggeng, 2012. "Pricing VXX option with default risk and positive volatility skew," European Journal of Operational Research, Elsevier, vol. 223(1), pages 246-255.
    18. Bu, Ruijun & Jawadi, Fredj & Li, Yuyi, 2017. "An empirical comparison of transformed diffusion models for VIX and VIX futures," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 46(C), pages 116-127.
    19. Hongkai Cao & Alexandru Badescu & Zhenyu Cui & Sarath Kumar Jayaraman, 2020. "Valuation of VIX and target volatility options with affine GARCH models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(12), pages 1880-1917, December.
    20. Andreas Kaeck & Carol Alexander, 2010. "VIX Dynamics with Stochastic Volatility of Volatility," ICMA Centre Discussion Papers in Finance icma-dp2010-11, Henley Business School, University of Reading.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijbder:v:3:y:2017:i:2:p:153-175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=405 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.