IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.13937.html
   My bibliography  Save this paper

Analytical Formula for Fractional-Order Conditional Moments of Nonlinear Drift CEV Process with Regime Switching: Hybrid Approach with Applications

Author

Listed:
  • Kittisak Chumpong
  • Khamron Mekchay
  • Fukiat Nualsri
  • Phiraphat Sutthimat

Abstract

This paper introduces an analytical formula for the fractional-order conditional moments of nonlinear drift constant elasticity of variance (NLD-CEV) processes under regime switching, governed by continuous-time finite-state irreducible Markov chains. By employing a hybrid system approach, we derive exact closed-form expressions for these moments across arbitrary fractional orders and regime states, thereby enhancing the analytical tractability of NLD-CEV models under stochastic regimes. Our methodology hinges on formulating and solving a complex system of interconnected partial differential equations derived from the Feynman-Kac formula for switching diffusions. To illustrate the practical relevance of our approach, Monte Carlo simulations for process with Markovian switching are applied to validate the accuracy and computational efficiency of the analytical formulas. Furthermore, we apply our findings for the valuation of financial derivatives within a dynamic nonlinear mean-reverting regime-switching framework, which demonstrates significant improvements over traditional methods. This work offers substantial contributions to financial modeling and derivative pricing by providing a robust tool for practitioners and researchers who are dealing with complex stochastic environments.

Suggested Citation

  • Kittisak Chumpong & Khamron Mekchay & Fukiat Nualsri & Phiraphat Sutthimat, 2024. "Analytical Formula for Fractional-Order Conditional Moments of Nonlinear Drift CEV Process with Regime Switching: Hybrid Approach with Applications," Papers 2411.13937, arXiv.org, revised Nov 2024.
  • Handle: RePEc:arx:papers:2411.13937
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.13937
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhigang Tong, 2017. "Modelling VIX and VIX derivatives with reducible diffusions," International Journal of Bonds and Derivatives, Inderscience Enterprises Ltd, vol. 3(2), pages 153-175.
    2. Daniel Dufresne, 2000. "Laguerre Series for Asian and Other Options," Mathematical Finance, Wiley Blackwell, vol. 10(4), pages 407-428, October.
    3. Sutthimat, Phiraphat & Mekchay, Khamron & Rujivan, Sanae, 2022. "Closed-form formula for conditional moments of generalized nonlinear drift CEV process," Applied Mathematics and Computation, Elsevier, vol. 428(C).
    4. Marsh, Terry A & Rosenfeld, Eric R, 1983. "Stochastic Processes for Interest Rates and Equilibrium Bond Prices," Journal of Finance, American Finance Association, vol. 38(2), pages 635-646, May.
    5. Brice Dupoyet & Robert T. Daigler & Zhiyao Chen, 2011. "A simplified pricing model for volatility futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 31(4), pages 307-339, April.
    6. Ahn, Dong-Hyun & Gao, Bin, 1999. "A Parametric Nonlinear Model of Term Structure Dynamics," The Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 721-762.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahdavi, Mahnaz, 2008. "A comparison of international short-term rates under no arbitrage condition," Global Finance Journal, Elsevier, vol. 18(3), pages 303-318.
    2. Bu, Ruijun & Cheng, Jie & Hadri, Kaddour, 2016. "Reducible diffusions with time-varying transformations with application to short-term interest rates," Economic Modelling, Elsevier, vol. 52(PA), pages 266-277.
    3. Antonio Mele, 2003. "Fundamental Properties of Bond Prices in Models of the Short-Term Rate," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 679-716, July.
    4. repec:wyi:journl:002108 is not listed on IDEAS
    5. Kittisak Chumpong & Khamron Mekchay & Fukiat Nualsri & Phiraphat Sutthimat, 2024. "Closed-Form Formula for the Conditional Moment-Generating Function Under a Regime-Switching, Nonlinear Drift CEV Process, with Applications to Option Pricing," Mathematics, MDPI, vol. 12(17), pages 1-15, August.
    6. Hao Zhou, 2003. "Itô Conditional Moment Generator and the Estimation of Short-Rate Processes," Journal of Financial Econometrics, Oxford University Press, vol. 1(2), pages 250-271.
    7. Dennis Kristensen, 2004. "A Semiparametric Single-Factor Model of the Term Structure," FMG Discussion Papers dp501, Financial Markets Group.
    8. Sutthimat, Phiraphat & Mekchay, Khamron & Rujivan, Sanae, 2022. "Closed-form formula for conditional moments of generalized nonlinear drift CEV process," Applied Mathematics and Computation, Elsevier, vol. 428(C).
    9. Kristensen, Dennis, 2004. "Estimation in two classes of semiparametric diffusion models," LSE Research Online Documents on Economics 24739, London School of Economics and Political Science, LSE Library.
    10. Zongwu Cai & Yongmiao Hong, 2013. "Some Recent Developments in Nonparametric Finance," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    11. Ruijun Bu & Ludovic Giet & Kaddour Hadri & Michel Lubrano, 2009. "Modelling Multivariate Interest Rates using Time-Varying Copulas and Reducible Non-Linear Stochastic Differential," Economics Working Papers 09-02, Queen's Management School, Queen's University Belfast.
    12. Zhigang Tong & Allen Liu, 2018. "Analytical pricing of discrete arithmetic Asian options under generalized CIR process with time change," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 1-21, March.
    13. Cai, Zongwu & Hong, Yongmiao, 2003. "Nonparametric Methods in Continuous-Time Finance: A Selective Review," SFB 373 Discussion Papers 2003,15, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    14. Haitao Li & Yuewu Xu, 2009. "Short Rate Dynamics and Regime Shifts," International Review of Finance, International Review of Finance Ltd., vol. 9(3), pages 211-241, September.
    15. Jean-Yves Datey & Genevieve Gauthier & Jean-Guy Simonato, 2003. "The Performance of Analytical Approximations for the Computation of Asian Quanto-Basket Option Prices," Multinational Finance Journal, Multinational Finance Journal, vol. 7(1-2), pages 55-82, March-Jun.
    16. Kimmel, Robert L., 2004. "Modeling the term structure of interest rates: A new approach," Journal of Financial Economics, Elsevier, vol. 72(1), pages 143-183, April.
    17. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    18. Dan Pirjol, 2024. "Subleading correction to the Asian options volatility in the Black-Scholes model," Papers 2407.05142, arXiv.org, revised Dec 2024.
    19. Bujar Huskaj & Marcus Nossman, 2013. "A Term Structure Model for VIX Futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(5), pages 421-442, May.
    20. Sebastian A. Gehricke & Jin E. Zhang, 2020. "Modeling VXX under jump diffusion with stochastic long‐term mean," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(10), pages 1508-1534, October.
    21. Takamizawa, Hideyuki & Shoji, Isao, 2009. "Modeling the term structure of interest rates with general diffusion processes: A moment approximation approach," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 65-77, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.13937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.