IDEAS home Printed from https://ideas.repec.org/a/ibn/jsd123/v13y2024i4p60.html
   My bibliography  Save this article

Potential of Jackfruit Waste for Biogas, Briquettes and as a Carbondioxide Sink-A Review

Author

Listed:
  • Denis Nsubuga
  • Noble Banadda
  • Isa Kabenge
  • Kerstin D. Wydra

Abstract

One of the key aspects of a green economic development model of a country is to develop indigenous resources and local expertise while utilizing sustainable technologies. This review explored the possibilities of utilizing jackfruit waste for production of biogas, briquettes and biochar. In many of the developing countries, there is huge potential for organic waste conversion into appropriate energy solutions. These can contribute to developing rural areas especially small holder farmers and diversifying the available energy sources. Biomass waste like jackfruit waste when managed well can produce bio-energy, but also the GHG emissions need to be reduced from unmanaged, decomposing organic material. When put to use, agricultural biowastes like jackfruit waste could be used as raw materials in the production of bio-products (biofuels, biochar, bio pesticides), briquettes, among others. The biochar can be mixed with the soil producing carbon-rich soils and contribute to CO2 sequestration and soil fertility. This paper reviews works focused on using jackfruit waste for anaerobically producing of biogas, briquettes and biochar for improved crop production. The paper concluded that jackfruit waste can anaerobically decompose to produce biogas and it can also be used for briquette production. It was further concluded that jackfruit waste can undergo decomposition at high temperatures to produce biochar which can be incorporated into the soil creating a CO2 sink hence helping in mitigating the effects of the climate change.

Suggested Citation

  • Denis Nsubuga & Noble Banadda & Isa Kabenge & Kerstin D. Wydra, 2024. "Potential of Jackfruit Waste for Biogas, Briquettes and as a Carbondioxide Sink-A Review," Journal of Sustainable Development, Canadian Center of Science and Education, vol. 13(4), pages 1-60, July.
  • Handle: RePEc:ibn:jsd123:v:13:y:2024:i:4:p:60
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/jsd/article/download/0/0/43354/45436
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/jsd/article/view/0/43354
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hynek Roubík & Jana Mazancová & Phung Le Dinh & Dung Dinh Van & Jan Banout, 2018. "Biogas Quality across Small-Scale Biogas Plants: A Case of Central Vietnam," Energies, MDPI, vol. 11(7), pages 1-12, July.
    2. Isa Kabenge & Godfrey Omulo & Noble Banadda & Jeffrey Seay & Ahamada Zziwa & Nicholas Kiggundu, 2018. "Characterization of Banana Peels Wastes as Potential Slow Pyrolysis Feedstock," Journal of Sustainable Development, Canadian Center of Science and Education, vol. 11(2), pages 1-14, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alberto Benato & Alarico Macor, 2019. "Italian Biogas Plants: Trend, Subsidies, Cost, Biogas Composition and Engine Emissions," Energies, MDPI, vol. 12(6), pages 1-31, March.
    2. Jabeen, Gul & Yan, Qingyou & Ahmad, Munir & Fatima, Nousheen & Jabeen, Maria & Li, Heng & Qamar, Shoaib, 2020. "Household-based critical influence factors of biogas generation technology utilization: A case of Punjab province of Pakistan," Renewable Energy, Elsevier, vol. 154(C), pages 650-660.
    3. Zohaib Ur Rehman Afridi & Wu Jing & Hassan Younas, 2019. "Biogas Production and Fundamental Mass Transfer Mechanism in Anaerobic Granular Sludge," Sustainability, MDPI, vol. 11(16), pages 1-15, August.
    4. Valerii Havrysh & Antonina Kalinichenko & Grzegorz Mentel & Tadeusz Olejarz, 2020. "Commercial Biogas Plants: Lessons for Ukraine," Energies, MDPI, vol. 13(10), pages 1-24, May.
    5. Francis Kemausuor & Muyiwa S. Adaramola & John Morken, 2018. "A Review of Commercial Biogas Systems and Lessons for Africa," Energies, MDPI, vol. 11(11), pages 1-21, November.
    6. Agnieszka A. Pilarska & Agnieszka Wolna-Maruwka & Krzysztof Pilarski, 2018. "Kraft Lignin Grafted with Polyvinylpyrrolidone as a Novel Microbial Carrier in Biogas Production," Energies, MDPI, vol. 11(12), pages 1-22, November.
    7. Alessio Siciliano & Carlo Limonti & Sanjeet Mehariya & Antonio Molino & Vincenza Calabrò, 2018. "Biofuel Production and Phosphorus Recovery through an Integrated Treatment of Agro-Industrial Waste," Sustainability, MDPI, vol. 11(1), pages 1-17, December.
    8. Filipe M. Quintino & Edgar C. Fernandes, 2021. "Numerical Investigation of the Impact of H 2 Enrichment on Lean Biogas/Air Flames: An Analytical Modelling Approach," Energies, MDPI, vol. 14(2), pages 1-17, January.
    9. Aixa Kari Gállego Bravo & Daniel Alejandro Salcedo Serrano & Gloria López Jiménez & Khemlal Nirmalkar & Selvasankar Murugesan & Jaime García-Mena & María Eugenia Gutiérrez Castillo & Luis Raúl Tovar G, 2019. "Microbial Profile of the Leachate from Mexico City’s Bordo Poniente Composting Plant: An Inoculum to Digest Organic Waste," Energies, MDPI, vol. 12(12), pages 1-21, June.
    10. Fei Wang & Mengfu Pei & Ling Qiu & Yiqing Yao & Congguang Zhang & Hong Qiang, 2019. "Performance of Anaerobic Digestion of Chicken Manure Under Gradually Elevated Organic Loading Rates," IJERPH, MDPI, vol. 16(12), pages 1-17, June.
    11. Wei-Hsin Chen & Keat Teong Lee & Hwai Chyuan Ong, 2019. "Biofuel and Bioenergy Technology," Energies, MDPI, vol. 12(2), pages 1-12, January.
    12. Jumoke Oladejo & Kaiqi Shi & Xiang Luo & Gang Yang & Tao Wu, 2018. "A Review of Sludge-to-Energy Recovery Methods," Energies, MDPI, vol. 12(1), pages 1-38, December.
    13. Dorian M. Godinez-Adame & Job A. Diaz-Hernandez & Luis E. Alvarez-Jacinto & Ludwig I.C. Ortiz-Garcia & Emily G. Cahum-Chan & Sheila M. Canul-Petul & Claudia B. Santiago-Martinez & Lourdes J. Solis-Uc , 2024. "Activated Carbon Obtained from Coffee and Orange Wastes," Journal of Sustainable Development, Canadian Center of Science and Education, vol. 12(4), pages 140-140, July.
    14. Song, Guohui & Xiao, Jun & Yan, Chao & Gu, Haiming & Zhao, Hao, 2022. "Quality of gaseous biofuels: Statistical assessment and guidance on production technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jsd123:v:13:y:2024:i:4:p:60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.