IDEAS home Printed from https://ideas.repec.org/a/ibn/jmrjnl/v9y2017i3p23-29.html
   My bibliography  Save this article

An Addendum on Postoptimality of Maximally Reliable Path

Author

Listed:
  • Ahmad Hosseini
  • Bita Kabir Baiki

Abstract

This paper studies one aspect of the robustness of optimal solutions to the \textit{maximally reliable path} and investigates the infimum and supremum multiplicative perturbations each individual arc can tolerate preserving the optimality of a given optimal path. When such marginal values are to be determined simultaneously for all arcs in a network, considerable duplication of effort can be avoided through the use of our proposed approach.

Suggested Citation

  • Ahmad Hosseini & Bita Kabir Baiki, 2017. "An Addendum on Postoptimality of Maximally Reliable Path," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 9(3), pages 23-29, June.
  • Handle: RePEc:ibn:jmrjnl:v:9:y:2017:i:3:p:23-29
    as

    Download full text from publisher

    File URL: http://www.ccsenet.org/journal/index.php/jmr/article/view/66342/37051
    Download Restriction: no

    File URL: http://www.ccsenet.org/journal/index.php/jmr/article/view/66342
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Salah E. Elmaghraby, 1964. "Sensitivity Analysis of Multiterminal Flow Networks," Operations Research, INFORMS, vol. 12(5), pages 680-688, October.
    2. Xing, Tao & Zhou, Xuesong, 2011. "Finding the most reliable path with and without link travel time correlation: A Lagrangian substitution based approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1660-1679.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yanzi & Diabat, Ali & Zhang, Zhi-Hai, 2021. "Reliable closed-loop supply chain design problem under facility-type-dependent probabilistic disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 180-209.
    2. Liu, Yong & Xiao, Feng & Shen, Minyu & Zhao, Lin & Li, Lu, 2024. "The k-th order mean-deviation model for route choice under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 189(C).
    3. Khani, Alireza & Boyles, Stephen D., 2015. "An exact algorithm for the mean–standard deviation shortest path problem," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 252-266.
    4. Shen, Liang & Shao, Hu & Wu, Ting & Fainman, Emily Zhu & Lam, William H.K., 2020. "Finding the reliable shortest path with correlated link travel times in signalized traffic networks under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    5. A. Arun Prakash & Karthik K. Srinivasan, 2017. "Finding the Most Reliable Strategy on Stochastic and Time-Dependent Transportation Networks: A Hypergraph Based Formulation," Networks and Spatial Economics, Springer, vol. 17(3), pages 809-840, September.
    6. Chen, Bi Yu & Li, Qingquan & Lam, William H.K., 2016. "Finding the k reliable shortest paths under travel time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 189-203.
    7. Zhang, Yuli & Shen, Zuo-Jun Max & Song, Shiji, 2016. "Parametric search for the bi-attribute concave shortest path problem," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 150-168.
    8. Zhang, Yufeng & Khani, Alireza, 2019. "An algorithm for reliable shortest path problem with travel time correlations," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 92-113.
    9. Zhang, Yuli & Max Shen, Zuo-Jun & Song, Shiji, 2017. "Lagrangian relaxation for the reliable shortest path problem with correlated link travel times," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 501-521.
    10. Borzou Rostami & Guy Desaulniers & Fausto Errico & Andrea Lodi, 2021. "Branch-Price-and-Cut Algorithms for the Vehicle Routing Problem with Stochastic and Correlated Travel Times," Operations Research, INFORMS, vol. 69(2), pages 436-455, March.
    11. Teng, Wenxin & Chen, Bi Yu, 2024. "Reliable lifelong planning A*: Technique for re-optimizing reliable shortest paths when travel time distribution updating," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    12. Chai, Huajun, 2019. "Dynamic Traffic Routing and Adaptive Signal Control in a Connected Vehicles Environment," Institute of Transportation Studies, Working Paper Series qt9ng3z8vn, Institute of Transportation Studies, UC Davis.
    13. Wu, Xin & Nie, Lei & Xu, Meng & Zhao, Lili, 2019. "Distribution planning problem for a high-speed rail catering service considering time-varying demands and pedestrian congestion: A lot-sizing-based model and decomposition algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 61-89.
    14. Yang, Lixing & Zhou, Xuesong, 2017. "Optimizing on-time arrival probability and percentile travel time for elementary path finding in time-dependent transportation networks: Linear mixed integer programming reformulations," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 68-91.
    15. Shahabi, Mehrdad & Unnikrishnan, Avinash & Boyles, Stephen D., 2013. "An outer approximation algorithm for the robust shortest path problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 58(C), pages 52-66.
    16. Prakash, A. Arun & Seshadri, Ravi & Srinivasan, Karthik K., 2018. "A consistent reliability-based user-equilibrium problem with risk-averse users and endogenous travel time correlations: Formulation and solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 171-198.
    17. Srinivasan, Karthik K. & Prakash, A.A. & Seshadri, Ravi, 2014. "Finding most reliable paths on networks with correlated and shifted log–normal travel times," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 110-128.
    18. Ahmad Hosseini & Mir Saman Pishvaee, 2022. "Capacity reliability under uncertainty in transportation networks: an optimization framework and stability assessment methodology," Fuzzy Optimization and Decision Making, Springer, vol. 21(3), pages 479-512, September.
    19. Zhaoqi Zang & Xiangdong Xu & Kai Qu & Ruiya Chen & Anthony Chen, 2022. "Travel time reliability in transportation networks: A review of methodological developments," Papers 2206.12696, arXiv.org, revised Jul 2022.
    20. Shaghayegh Mokarami & S. Hashemi, 2015. "Constrained shortest path with uncertain transit times," Journal of Global Optimization, Springer, vol. 63(1), pages 149-163, September.

    More about this item

    Keywords

    network theory; maximally reliable path;

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jmrjnl:v:9:y:2017:i:3:p:23-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.