IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v123y2019icp61-89.html
   My bibliography  Save this article

Distribution planning problem for a high-speed rail catering service considering time-varying demands and pedestrian congestion: A lot-sizing-based model and decomposition algorithm

Author

Listed:
  • Wu, Xin
  • Nie, Lei
  • Xu, Meng
  • Zhao, Lili

Abstract

A non-linear mixed integer programming problem is developed to establish a distribution plan for catering services of high-speed railways (CSHRs) based on lot-sizing networks. The model attempts to determine the locations for producing different types of food products and controlling the inventory levels of trains during their trips, considering the storage capacities and time-varying demands. A Lagrangian substitution-based solution approach is applied to decompose the model into a mixed integer linear programming model and a sequence of univariate concave models. Computational experiments indicate that the approach performs satisfactorily in terms of computational time and solution quality in a real-world situation.

Suggested Citation

  • Wu, Xin & Nie, Lei & Xu, Meng & Zhao, Lili, 2019. "Distribution planning problem for a high-speed rail catering service considering time-varying demands and pedestrian congestion: A lot-sizing-based model and decomposition algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 61-89.
  • Handle: RePEc:eee:transe:v:123:y:2019:i:c:p:61-89
    DOI: 10.1016/j.tre.2019.01.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554518305891
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2019.01.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Jiangtao & Zhou, Xuesong, 2016. "Capacitated transit service network design with boundedly rational agents," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 225-250.
    2. Klose, Andreas & Drexl, Andreas, 2005. "Facility location models for distribution system design," European Journal of Operational Research, Elsevier, vol. 162(1), pages 4-29, April.
    3. Ho, Sin C. & Leung, Janny M.Y., 2010. "Solving a manpower scheduling problem for airline catering using metaheuristics," European Journal of Operational Research, Elsevier, vol. 202(3), pages 903-921, May.
    4. Gelders, Ludo F. & Pintelon, Liliane M. & Van Wassenhove, Luk N., 1987. "A location-allocation problem in a large Belgian brewery," European Journal of Operational Research, Elsevier, vol. 28(2), pages 196-206, February.
    5. Marshall L. Fisher & Kurt O. Jörnsten & Oli B. G. Madsen, 1997. "Vehicle Routing with Time Windows: Two Optimization Algorithms," Operations Research, INFORMS, vol. 45(3), pages 488-492, June.
    6. Wu, Xin & Nie, Lei & Xu, Meng & Yan, Fei, 2018. "A perishable food supply chain problem considering demand uncertainty and time deadline constraints: Modeling and application to a high-speed railway catering service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 186-209.
    7. Mark Daskin & Collette Coullard & Zuo-Jun Shen, 2002. "An Inventory-Location Model: Formulation, Solution Algorithm and Computational Results," Annals of Operations Research, Springer, vol. 110(1), pages 83-106, February.
    8. Zhang, Zhi-Hai & Jiang, Hai & Pan, Xunzhang, 2012. "A Lagrangian relaxation based approach for the capacitated lot sizing problem in closed-loop supply chain," International Journal of Production Economics, Elsevier, vol. 140(1), pages 249-255.
    9. John Pooley, 1994. "Integrated Production and Distribution Facility Planning at Ault Foods," Interfaces, INFORMS, vol. 24(4), pages 113-121, August.
    10. Wu, Xin & Nie, Lei & Xu, Meng, 2017. "Robust fuzzy quality function deployment based on the mean-end-chain concept: Service station evaluation problem for rail catering services," European Journal of Operational Research, Elsevier, vol. 263(3), pages 974-995.
    11. Viti, Francesco & Rinaldi, Marco & Corman, Francesco & Tampère, Chris M.J., 2014. "Assessing partial observability in network sensor location problems," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 65-89.
    12. Nagurney, Anna & Dong, June & Zhang, Ding, 2002. "A supply chain network equilibrium model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 38(5), pages 281-303, September.
    13. Ali Diabat & Jean-Philippe Richard & Craig Codrington, 2013. "A Lagrangian relaxation approach to simultaneous strategic and tactical planning in supply chain design," Annals of Operations Research, Springer, vol. 203(1), pages 55-80, March.
    14. Xing, Tao & Zhou, Xuesong, 2011. "Finding the most reliable path with and without link travel time correlation: A Lagrangian substitution based approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1660-1679.
    15. Nagurney, Anna & Nagurney, Ladimer S., 2012. "Medical nuclear supply chain design: A tractable network model and computational approach," International Journal of Production Economics, Elsevier, vol. 140(2), pages 865-874.
    16. Fu, Huiling & Nie, Lei & Meng, Lingyun & Sperry, Benjamin R. & He, Zhenhuan, 2015. "A hierarchical line planning approach for a large-scale high speed rail network: The China case," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 61-83.
    17. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    18. Larsson, Torbjorn & Migdalas, Athanasios & Ronnqvist, Mikael, 1994. "A Lagrangean heuristic for the capacitated concave minimum cost network flow problem," European Journal of Operational Research, Elsevier, vol. 78(1), pages 116-129, October.
    19. Tadashi Yamada & Bona Frazila Russ & Jun Castro & Eiichi Taniguchi, 2009. "Designing Multimodal Freight Transport Networks: A Heuristic Approach and Applications," Transportation Science, INFORMS, vol. 43(2), pages 129-143, May.
    20. Lam, William H. K. & Cheung, Chung-Yu & Lam, C. F., 1999. "A study of crowding effects at the Hong Kong light rail transit stations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(5), pages 401-415, June.
    21. Lam, William H. K. & Lee, Jodie Y. S. & Chan, K. S. & Goh, P. K., 2003. "A generalised function for modeling bi-directional flow effects on indoor walkways in Hong Kong," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(9), pages 789-810, November.
    22. Jason H. Goto & Mark E. Lewis & Martin L. Puterman, 2004. "Coffee, Tea, or …?: A Markov Decision Process Model for Airline Meal Provisioning," Transportation Science, INFORMS, vol. 38(1), pages 107-118, February.
    23. Shahabi, Mehrdad & Unnikrishnan, Avinash & Jafari-Shirazi, Ehsan & Boyles, Stephen D., 2014. "A three level location-inventory problem with correlated demand," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 1-18.
    24. Pablo Miranda & Rodrigo Garrido, 2006. "A Simultaneous Inventory Control and Facility Location Model with Stochastic Capacity Constraints," Networks and Spatial Economics, Springer, vol. 6(1), pages 39-53, March.
    25. Francisco Silva & Lucia Gao, 2013. "A Joint Replenishment Inventory-Location Model," Networks and Spatial Economics, Springer, vol. 13(1), pages 107-122, March.
    26. Meng, Qiang & Wang, Xinchang, 2011. "Intermodal hub-and-spoke network design: Incorporating multiple stakeholders and multi-type containers," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 724-742, May.
    27. Masoumi, Amir H. & Yu, Min & Nagurney, Anna, 2012. "A supply chain generalized network oligopoly model for pharmaceuticals under brand differentiation and perishability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(4), pages 762-780.
    28. Meng, Q. & Yang, H. & Bell, M. G. H., 2001. "An equivalent continuously differentiable model and a locally convergent algorithm for the continuous network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 35(1), pages 83-105, January.
    29. Zuo-Jun Max Shen & Collette Coullard & Mark S. Daskin, 2003. "A Joint Location-Inventory Model," Transportation Science, INFORMS, vol. 37(1), pages 40-55, February.
    30. Zhang, Zhi-Hai & Unnikrishnan, Avinash, 2016. "A coordinated location-inventory problem in closed-loop supply chain," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 127-148.
    31. Yu, Min & Nagurney, Anna, 2013. "Competitive food supply chain networks with application to fresh produce," European Journal of Operational Research, Elsevier, vol. 224(2), pages 273-282.
    32. Mehrdad Shahabi & Shirin Akbarinasaji & Avinash Unnikrishnan & Rachel James, 2013. "Integrated Inventory Control and Facility Location Decisions in a Multi-Echelon Supply Chain Network with Hubs," Networks and Spatial Economics, Springer, vol. 13(4), pages 497-514, December.
    33. Mahmoudi, Monirehalsadat & Zhou, Xuesong, 2016. "Finding optimal solutions for vehicle routing problem with pickup and delivery services with time windows: A dynamic programming approach based on state–space–time network representations," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 19-42.
    34. M. Gentili & P. Mirchandani, 2005. "Locating Active Sensors on Traffic Networks," Annals of Operations Research, Springer, vol. 136(1), pages 229-257, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Xin (Bruce) & Lu, Jiawei & Wu, Shengnan & Zhou, Xuesong (Simon), 2021. "Synchronizing time-dependent transportation services: Reformulation and solution algorithm using quadratic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 140-179.
    2. Xu, Guangming & Liu, Wei & Wu, Runfa & Yang, Hai, 2021. "A double time-scale passenger assignment model for high-speed railway networks with continuum capacity approximation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    3. Han, Linghui & Zhu, Chengjuan & Wang, David Z.W. & Sun, Huijun & Tan, Zhijia & Meng, Meng, 2019. "Discrete-time dynamic road congestion pricing under stochastic user optimal principle," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 24-36.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Xin & Nie, Lei & Xu, Meng & Yan, Fei, 2018. "A perishable food supply chain problem considering demand uncertainty and time deadline constraints: Modeling and application to a high-speed railway catering service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 186-209.
    2. Puntipa Punyim & Ampol Karoonsoontawong & Avinash Unnikrishnan & Chi Xie, 2018. "Tabu Search Heuristic for Joint Location-Inventory Problem with Stochastic Inventory Capacity and Practicality Constraints," Networks and Spatial Economics, Springer, vol. 18(1), pages 51-84, March.
    3. Aaron Guerrero Campanur & Elias Olivares-Benitez & Pablo A. Miranda & Rodolfo Eleazar Perez-Loaiza & Jose Humberto Ablanedo-Rosas, 2018. "Design of a Logistics Nonlinear System for a Complex, Multiechelon, Supply Chain Network with Uncertain Demands," Complexity, Hindawi, vol. 2018, pages 1-16, November.
    4. Schuster Puga, Matías & Minner, Stefan & Tancrez, Jean-Sébastien, 2019. "Two-stage supply chain design with safety stock placement decisions," International Journal of Production Economics, Elsevier, vol. 209(C), pages 183-193.
    5. Shahabi, Mehrdad & Tafreshian, Amirmahdi & Unnikrishnan, Avinash & Boyles, Stephen D., 2018. "Joint production–inventory–location problem with multi-variate normal demand," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 60-78.
    6. Ahmadi-Javid, Amir & Hoseinpour, Pooya, 2015. "A location-inventory-pricing model in a supply chain distribution network with price-sensitive demands and inventory-capacity constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 238-255.
    7. Zhang, Yanzi & Diabat, Ali & Zhang, Zhi-Hai, 2021. "Reliable closed-loop supply chain design problem under facility-type-dependent probabilistic disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 180-209.
    8. Zhalechian, M. & Tavakkoli-Moghaddam, R. & Zahiri, B. & Mohammadi, M., 2016. "Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 182-214.
    9. Emilio Carrizosa & Alba V. Olivares-Nadal & Pepa Ramírez-Cobo, 2020. "Embedding the production policy in location-allocation decisions," 4OR, Springer, vol. 18(3), pages 357-380, September.
    10. Darmawan, Agus & Wong, Hartanto & Thorstenson, Anders, 2021. "Supply chain network design with coordinated inventory control," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    11. Hao Guo & Congdong Li & Ying Zhang & Chunnan Zhang & Mengmeng Lu, 2018. "A Location-Inventory Problem in a Closed-Loop Supply Chain with Secondary Market Consideration," Sustainability, MDPI, vol. 10(6), pages 1-20, June.
    12. Puntipa Punyim & Ampol Karoonsoontawong & Avinash Unnikrishnan & Vatanavongs Ratanavaraha, 2022. "A Heuristic for the Two-Echelon Multi-Period Multi-Product Location–Inventory Problem with Partial Facility Closing and Reopening," Sustainability, MDPI, vol. 14(17), pages 1-32, August.
    13. Behnam Vahdani & Elham Ahmadzadeh, 2021. "Incorporating Price-Dependent Demands into a Multi-Echelon Closed-Loop Network Considering the Lost Sales and Backorders: a Case Study of Wireless Network," Networks and Spatial Economics, Springer, vol. 21(3), pages 639-680, September.
    14. Schuster Puga, Matías & Tancrez, Jean-Sébastien, 2017. "A heuristic algorithm for solving large location–inventory problems with demand uncertainty," European Journal of Operational Research, Elsevier, vol. 259(2), pages 413-423.
    15. Zheng, Xiaojin & Yin, Meixia & Zhang, Yanxia, 2019. "Integrated optimization of location, inventory and routing in supply chain network design," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 1-20.
    16. Zhang, Zhi-Hai & Unnikrishnan, Avinash, 2016. "A coordinated location-inventory problem in closed-loop supply chain," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 127-148.
    17. Zhong, Yuanguang & Shu, Jia & Xie, Wei & Zhou, Yong-Wu, 2018. "Optimal trade credit and replenishment policies for supply chain network design," Omega, Elsevier, vol. 81(C), pages 26-37.
    18. Hao Guo & Ying Zhang & Chunnan Zhang & Yu Liu & Yuan Zhou, 2020. "Location-inventory decisions for closed-loop supply chain management in the presence of the secondary market," Annals of Operations Research, Springer, vol. 291(1), pages 361-386, August.
    19. Onur Kaya & Dogus Ozkok, 2020. "A Blood Bank Network Design Problem with Integrated Facility Location, Inventory and Routing Decisions," Networks and Spatial Economics, Springer, vol. 20(3), pages 757-783, September.
    20. Mehrdad Shahabi & Shirin Akbarinasaji & Avinash Unnikrishnan & Rachel James, 2013. "Integrated Inventory Control and Facility Location Decisions in a Multi-Echelon Supply Chain Network with Hubs," Networks and Spatial Economics, Springer, vol. 13(4), pages 497-514, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:123:y:2019:i:c:p:61-89. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.