IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v63y2015i1p149-163.html
   My bibliography  Save this article

Constrained shortest path with uncertain transit times

Author

Listed:
  • Shaghayegh Mokarami
  • S. Hashemi

Abstract

This paper is concerned with the constrained shortest path (CSP) problem, where in addition to the arc cost, a transit time is associated to each arc. The presence of uncertainty in transit times is a critical issue in a wide variety of world applications, such as telecommunication, traffic, and transportation. To capture this issue, we present tractable approaches for solving the CSP problem with uncertain transit times from the viewpoint of robust and stochastic optimization. To study robust CSP problem, two different uncertainty sets, $${\varGamma }$$ Γ -scenario and ellipsoidal, are considered. We show that the robust counterpart of the CSP problem under both uncertainty sets, can be efficiently solved. We further consider the CSP problem with random transit times and show that the problem can be solved by solving robust constrained shortest path problem under ellipsoidal uncertainty set. We present extensive computational results on a set of randomly generated networks. Our results demonstrate that with a reasonable extra cost, the robust optimal path preserves feasibility, in almost all scenarios under $${\varGamma }$$ Γ -scenario uncertainty set. The results also show that, in the most cases, the robust CSP problem under ellipsoidal uncertainty set is feasible. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Shaghayegh Mokarami & S. Hashemi, 2015. "Constrained shortest path with uncertain transit times," Journal of Global Optimization, Springer, vol. 63(1), pages 149-163, September.
  • Handle: RePEc:spr:jglopt:v:63:y:2015:i:1:p:149-163
    DOI: 10.1007/s10898-015-0280-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-015-0280-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-015-0280-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xing, Tao & Zhou, Xuesong, 2011. "Finding the most reliable path with and without link travel time correlation: A Lagrangian substitution based approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1660-1679.
    2. Suvrajeet Sen & Rekha Pillai & Shirish Joshi & Ajay K. Rathi, 2001. "A Mean-Variance Model for Route Guidance in Advanced Traveler Information Systems," Transportation Science, INFORMS, vol. 35(1), pages 37-49, February.
    3. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    4. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    5. Refael Hassin, 1992. "Approximation Schemes for the Restricted Shortest Path Problem," Mathematics of Operations Research, INFORMS, vol. 17(1), pages 36-42, February.
    6. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    7. George B. Dantzig, 1955. "Linear Programming under Uncertainty," Management Science, INFORMS, vol. 1(3-4), pages 197-206, 04-07.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christoph Buchheim & Jannis Kurtz, 2018. "Robust combinatorial optimization under convex and discrete cost uncertainty," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 211-238, September.
    2. Lei Gao & Dong Han, 2020. "Extreme Value Distributions for Two Kinds of Path Sums of Markov Chain," Methodology and Computing in Applied Probability, Springer, vol. 22(1), pages 279-294, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hatami-Marbini, Adel & Arabmaldar, Aliasghar, 2021. "Robustness of Farrell cost efficiency measurement under data perturbations: Evidence from a US manufacturing application," European Journal of Operational Research, Elsevier, vol. 295(2), pages 604-620.
    2. Marla, Lavanya & Rikun, Alexander & Stauffer, Gautier & Pratsini, Eleni, 2020. "Robust modeling and planning: Insights from three industrial applications," Operations Research Perspectives, Elsevier, vol. 7(C).
    3. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    4. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    5. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    6. Hamed Mamani & Shima Nassiri & Michael R. Wagner, 2017. "Closed-Form Solutions for Robust Inventory Management," Management Science, INFORMS, vol. 63(5), pages 1625-1643, May.
    7. Shunichi Ohmori, 2021. "A Predictive Prescription Using Minimum Volume k -Nearest Neighbor Enclosing Ellipsoid and Robust Optimization," Mathematics, MDPI, vol. 9(2), pages 1-16, January.
    8. Roberto Gomes de Mattos & Fabricio Oliveira & Adriana Leiras & Abdon Baptista de Paula Filho & Paulo Gonçalves, 2019. "Robust optimization of the insecticide-treated bed nets procurement and distribution planning under uncertainty for malaria prevention and control," Annals of Operations Research, Springer, vol. 283(1), pages 1045-1078, December.
    9. Soyster, A.L. & Murphy, F.H., 2013. "A unifying framework for duality and modeling in robust linear programs," Omega, Elsevier, vol. 41(6), pages 984-997.
    10. Mavrotas, George & Figueira, José Rui & Siskos, Eleftherios, 2015. "Robustness analysis methodology for multi-objective combinatorial optimization problems and application to project selection," Omega, Elsevier, vol. 52(C), pages 142-155.
    11. Tao Yao & Supreet Mandala & Byung Chung, 2009. "Evacuation Transportation Planning Under Uncertainty: A Robust Optimization Approach," Networks and Spatial Economics, Springer, vol. 9(2), pages 171-189, June.
    12. Cleber D. Rocco & Reinaldo Morabito, 2016. "Robust optimisation approach applied to the analysis of production / logistics and crop planning in the tomato processing industry," International Journal of Production Research, Taylor & Francis Journals, vol. 54(19), pages 5842-5861, October.
    13. Petros Xanthopoulos & Mario Guarracino & Panos Pardalos, 2014. "Robust generalized eigenvalue classifier with ellipsoidal uncertainty," Annals of Operations Research, Springer, vol. 216(1), pages 327-342, May.
    14. Nitish Umang & Michel Bierlaire & Alan L. Erera, 2017. "Real-time management of berth allocation with stochastic arrival and handling times," Journal of Scheduling, Springer, vol. 20(1), pages 67-83, February.
    15. Henao, César Augusto & Ferrer, Juan Carlos & Muñoz, Juan Carlos & Vera, Jorge, 2016. "Multiskilling with closed chains in a service industry: A robust optimization approach," International Journal of Production Economics, Elsevier, vol. 179(C), pages 166-178.
    16. Dimitris Bertsimas & Vineet Goyal, 2013. "On the approximability of adjustable robust convex optimization under uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 323-343, June.
    17. Krumke, Sven O. & Schmidt, Eva & Streicher, Manuel, 2019. "Robust multicovers with budgeted uncertainty," European Journal of Operational Research, Elsevier, vol. 274(3), pages 845-857.
    18. Ghazaleh Ahmadi & Reza Tavakkoli-Moghaddam & Armand Baboli & Mehdi Najafi, 2022. "A decision support model for robust allocation and routing of search and rescue resources after earthquake: a case study," Operational Research, Springer, vol. 22(2), pages 1039-1081, April.
    19. Lin, Jun & Ng, Tsan Sheng, 2011. "Robust multi-market newsvendor models with interval demand data," European Journal of Operational Research, Elsevier, vol. 212(2), pages 361-373, July.
    20. Somayeh Moazeni & Thomas Coleman & Yuying Li, 2013. "Regularized robust optimization: the optimal portfolio execution case," Computational Optimization and Applications, Springer, vol. 55(2), pages 341-377, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:63:y:2015:i:1:p:149-163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.