IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v66y2014icp110-128.html
   My bibliography  Save this article

Finding most reliable paths on networks with correlated and shifted log–normal travel times

Author

Listed:
  • Srinivasan, Karthik K.
  • Prakash, A.A.
  • Seshadri, Ravi

Abstract

There is a growing interest in modeling travel time uncertainty in transportation networks in addition to optimizing the reliability of travel times at the path and network level. This paper focuses on the analysis and optimization of travel time (including stopped delays) Reliability on the Urban Road Network in Chennai. Specifically, two objectives are investigated. The first objective involves the quantification of travel time reliability at the link and path level. In particular, the distribution of link travel times is quantified for the Chennai Urban road network using empirical data. The results indicate that the shifted log–normal distribution (SLN) reasonably represents link travel time for all facility types and relevant facility wise distribution parameters are estimated. Further, the resulting path travel time distribution is approximated by a SLN distribution, which is computationally less expensive than traditional Monte-Carlo estimation techniques with an acceptable compromise on accuracy. The second objective addresses the optimal reliability path problem on a network with SLN link travel times with general correlation structure. For this problem, it is shown that the sub-path optimality property of shortest path problems does not hold making traditional label-setting/label correcting algorithms inapplicable. Consequently, a sufficient optimality condition based on reliability bounds is established and a new network optimization algorithm is proposed and proof of correctness is presented. The convergence rate of the algorithm was shown to increase at every iteration under some mild conditions. The computational performance of the proposed algorithm is investigated using synthetic and real-world networks and found to be reasonably accurate.

Suggested Citation

  • Srinivasan, Karthik K. & Prakash, A.A. & Seshadri, Ravi, 2014. "Finding most reliable paths on networks with correlated and shifted log–normal travel times," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 110-128.
  • Handle: RePEc:eee:transb:v:66:y:2014:i:c:p:110-128
    DOI: 10.1016/j.trb.2013.10.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261513001847
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2013.10.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, He & Gao, Song, 2012. "Optimal paths in dynamic networks with dependent random link travel times," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 579-598.
    2. Ravi Seshadri & Karthik K. Srinivasan, 2012. "An Algorithm for the Minimum Robust Cost Path on Networks with Random and Correlated Link Travel Times," Transportation Research, Economics and Policy, in: David M. Levinson & Henry X. Liu & Michael Bell (ed.), Network Reliability in Practice, edition 1, chapter 0, pages 171-208, Springer.
    3. Xing, Tao & Zhou, Xuesong, 2011. "Finding the most reliable path with and without link travel time correlation: A Lagrangian substitution based approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1660-1679.
    4. Suvrajeet Sen & Rekha Pillai & Shirish Joshi & Ajay K. Rathi, 2001. "A Mean-Variance Model for Route Guidance in Advanced Traveler Information Systems," Transportation Science, INFORMS, vol. 35(1), pages 37-49, February.
    5. Schäfer Juliane & Strimmer Korbinian, 2005. "A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-32, November.
    6. H. Frank, 1969. "Shortest Paths in Probabilistic Graphs," Operations Research, INFORMS, vol. 17(4), pages 583-599, August.
    7. Randolph W. Hall, 1986. "The Fastest Path through a Network with Random Time-Dependent Travel Times," Transportation Science, INFORMS, vol. 20(3), pages 182-188, August.
    8. Bates, John & Polak, John & Jones, Peter & Cook, Andrew, 0. "The valuation of reliability for personal travel," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 37(2-3), pages 191-229, April.
    9. Pretolani, Daniele, 2000. "A directed hypergraph model for random time dependent shortest paths," European Journal of Operational Research, Elsevier, vol. 123(2), pages 315-324, June.
    10. Raj A. Sivakumar & Rajan Batta, 1994. "The Variance-Constrained Shortest Path Problem," Transportation Science, INFORMS, vol. 28(4), pages 309-316, November.
    11. Miller-Hooks, Elise & Mahmassani, Hani, 2003. "Path comparisons for a priori and time-adaptive decisions in stochastic, time-varying networks," European Journal of Operational Research, Elsevier, vol. 146(1), pages 67-82, April.
    12. van Lint, J.W.C. & van Zuylen, Henk J. & Tu, H., 2008. "Travel time unreliability on freeways: Why measures based on variance tell only half the story," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(1), pages 258-277, January.
    13. Recker, Will & Chung, Younshik & Park, Jiyoung & Wang, Lesley & Chen, Anthony & Ji, Zhaowang & Liu, Henry & Horrocks, Matthew & Oh, Jun-Seok, 2005. "Considering Risk-Taking Behavior in Travel Time Reliability," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt59v844cr, Institute of Transportation Studies, UC Berkeley.
    14. Nie, Yu (Marco) & Wu, Xing, 2009. "Shortest path problem considering on-time arrival probability," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 597-613, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Arun Prakash & Karthik K. Srinivasan, 2018. "Pruning Algorithms to Determine Reliable Paths on Networks with Random and Correlated Link Travel Times," Transportation Science, INFORMS, vol. 52(1), pages 80-101, January.
    2. Shahabi, Mehrdad & Unnikrishnan, Avinash & Boyles, Stephen D., 2013. "An outer approximation algorithm for the robust shortest path problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 58(C), pages 52-66.
    3. David Corredor-Montenegro & Nicolás Cabrera & Raha Akhavan-Tabatabaei & Andrés L. Medaglia, 2021. "On the shortest $$\alpha$$ α -reliable path problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 287-318, April.
    4. A. Arun Prakash & Karthik K. Srinivasan, 2017. "Finding the Most Reliable Strategy on Stochastic and Time-Dependent Transportation Networks: A Hypergraph Based Formulation," Networks and Spatial Economics, Springer, vol. 17(3), pages 809-840, September.
    5. Yang, Lixing & Zhou, Xuesong, 2014. "Constraint reformulation and a Lagrangian relaxation-based solution algorithm for a least expected time path problem," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 22-44.
    6. Yang, Lixing & Zhou, Xuesong, 2017. "Optimizing on-time arrival probability and percentile travel time for elementary path finding in time-dependent transportation networks: Linear mixed integer programming reformulations," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 68-91.
    7. Wu, Xing & (Marco) Nie, Yu, 2011. "Modeling heterogeneous risk-taking behavior in route choice: A stochastic dominance approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 896-915, November.
    8. Huang, He & Gao, Song, 2012. "Optimal paths in dynamic networks with dependent random link travel times," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 579-598.
    9. Shen, Liang & Shao, Hu & Wu, Ting & Fainman, Emily Zhu & Lam, William H.K., 2020. "Finding the reliable shortest path with correlated link travel times in signalized traffic networks under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    10. Tan, Zhijia & Yang, Hai & Guo, Renyong, 2014. "Pareto efficiency of reliability-based traffic equilibria and risk-taking behavior of travelers," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 16-31.
    11. Wang, Li & Yang, Lixing & Gao, Ziyou, 2016. "The constrained shortest path problem with stochastic correlated link travel times," European Journal of Operational Research, Elsevier, vol. 255(1), pages 43-57.
    12. Zhang, Yuli & Max Shen, Zuo-Jun & Song, Shiji, 2017. "Lagrangian relaxation for the reliable shortest path problem with correlated link travel times," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 501-521.
    13. Nie, Yu (Marco) & Wu, Xing & Dillenburg, John F. & Nelson, Peter C., 2012. "Reliable route guidance: A case study from Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(2), pages 403-419.
    14. Zhaoqi Zang & Xiangdong Xu & Kai Qu & Ruiya Chen & Anthony Chen, 2022. "Travel time reliability in transportation networks: A review of methodological developments," Papers 2206.12696, arXiv.org, revised Jul 2022.
    15. Leilei Zhang & Tito Homem-de-Mello, 2017. "An Optimal Path Model for the Risk-Averse Traveler," Transportation Science, INFORMS, vol. 51(2), pages 518-535, May.
    16. Arun Prakash, A., 2020. "Algorithms for most reliable routes on stochastic and time-dependent networks," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 202-220.
    17. Nie, Yu (Marco) & Wu, Xing, 2009. "Shortest path problem considering on-time arrival probability," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 597-613, July.
    18. Bi Chen & William Lam & Agachai Sumalee & Qingquan Li & Hu Shao & Zhixiang Fang, 2013. "Finding Reliable Shortest Paths in Road Networks Under Uncertainty," Networks and Spatial Economics, Springer, vol. 13(2), pages 123-148, June.
    19. Matthias Ruß & Gunther Gust & Dirk Neumann, 2021. "The Constrained Reliable Shortest Path Problem in Stochastic Time-Dependent Networks," Operations Research, INFORMS, vol. 69(3), pages 709-726, May.
    20. Wen, Liang & Çatay, Bülent & Eglese, Richard, 2014. "Finding a minimum cost path between a pair of nodes in a time-varying road network with a congestion charge," European Journal of Operational Research, Elsevier, vol. 236(3), pages 915-923.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:66:y:2014:i:c:p:110-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.