IDEAS home Printed from https://ideas.repec.org/a/ibn/jasjnl/v8y2016i4p140.html
   My bibliography  Save this article

Cost-, Cumulative Energy- and Emergy Aspects of Conventional and Organic Winter Wheat (Triticum aestivum L.) Cultivation

Author

Listed:
  • Anna Kuczuk

Abstract

The differences in the investment, cost, energy efficiency of cultivation in organic and conventional systems are considerable. This paper reports the results of emergy analysis and comparison of cost and energy efficiency of the two systems based on the example of growing winter wheat (Triticum aestivum L.). The differences between the two systems include the total cost of production as well as various levels of economic efficiency of production in a conventional system. It was noted that the cost of conventional production is decided on by the large cost of production materials. These farms demonstrate considerably lower energy efficiency of production. In contrast, in organic farms we can observe lower yield levels associated with the more extensive production quality. However, in the considerations we needs to take into account how the two types of production affect the natural environment. For this reason, emergy analysis was taken up, as its results indicate lower energy use in ecological cultivation.

Suggested Citation

  • Anna Kuczuk, 2016. "Cost-, Cumulative Energy- and Emergy Aspects of Conventional and Organic Winter Wheat (Triticum aestivum L.) Cultivation," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 8(4), pages 140-140, March.
  • Handle: RePEc:ibn:jasjnl:v:8:y:2016:i:4:p:140
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/jas/article/download/56690/31051
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/jas/article/view/56690
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. L. Krejčířová & I. Capouchová & J. Petr & E. Bicanová & O. Faměra, 2007. "The effect of organic and conventional growing systems on quality and storage protein composition of winter wheat," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 53(11), pages 499-505.
    2. Wang, Xiaolong & Chen, Yuanquan & Sui, Peng & Gao, Wangsheng & Qin, Feng & Zhang, Jiansheng & Wu, Xia, 2014. "Emergy analysis of grain production systems on large-scale farms in the North China Plain based on LCA," Agricultural Systems, Elsevier, vol. 128(C), pages 66-78.
    3. Verena Seufert & Navin Ramankutty & Jonathan A. Foley, 2012. "Comparing the yields of organic and conventional agriculture," Nature, Nature, vol. 485(7397), pages 229-232, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianling Fan & Cuiying Liu & Jianan Xie & Lu Han & Chuanhong Zhang & Dengwei Guo & Junzhao Niu & Hao Jin & Brian G. McConkey, 2022. "Life Cycle Assessment on Agricultural Production: A Mini Review on Methodology, Application, and Challenges," IJERPH, MDPI, vol. 19(16), pages 1-16, August.
    2. Wang, Linlin & Li, Qiang & Coulter, Jeffrey A. & Xie, Junhong & Luo, Zhuzhu & Zhang, Renzhi & Deng, Xiping & Li, Linglin, 2020. "Winter wheat yield and water use efficiency response to organic fertilization in northern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 229(C).
    3. Daniel P. Roberts & Autar K. Mattoo, 2018. "Sustainable Agriculture—Enhancing Environmental Benefits, Food Nutritional Quality and Building Crop Resilience to Abiotic and Biotic Stresses," Agriculture, MDPI, vol. 8(1), pages 1-24, January.
    4. Sadowski, Arkadiusz & Wojcieszak-Zbierska, Monika Małgorzata & Zmyślona, Jagoda, 2024. "Agricultural production in the least developed countries and its impact on emission of greenhouse gases – An energy approach," Land Use Policy, Elsevier, vol. 136(C).
    5. Kalaitzandonakes, Nicholas & Lusk, Jayson & Magnier, Alexandre, 2018. "The price of non-genetically modified (non-GM) food," Food Policy, Elsevier, vol. 78(C), pages 38-50.
    6. Nesar Ahmed & Shirley Thompson & Giovanni M. Turchini, 2020. "Organic aquaculture productivity, environmental sustainability, and food security: insights from organic agriculture," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1253-1267, December.
    7. Kalle Margus & Viacheslav Eremeev & Evelin Loit & Eve Runno-Paurson & Erkki Mäeorg & Anne Luik & Liina Talgre, 2022. "Impact of Farming System on Potato Yield and Tuber Quality in Northern Baltic Sea Climate Conditions," Agriculture, MDPI, vol. 12(4), pages 1-12, April.
    8. de la Cruz, Vera Ysabel V. & Tantriani, & Cheng, Weiguo & Tawaraya, Keitaro, 2023. "Yield gap between organic and conventional farming systems across climate types and sub-types: A meta-analysis," Agricultural Systems, Elsevier, vol. 211(C).
    9. Bang, Rasmus & Hansen, Bjørn Gunnar & Guajardo, Mario & Sommerseth, Jon Kristian & Flaten, Ola & Asheim, Leif Jarle, 2024. "Conventional or organic cattle farming? Trade-offs between crop yield, livestock capacity, organic premiums, and government payments," Agricultural Systems, Elsevier, vol. 218(C).
    10. Maurer, Rainer, 2023. "Comparing the effect of different agricultural land-use systems on biodiversity," Land Use Policy, Elsevier, vol. 134(C).
    11. Natalia Brzezina & Birgit Kopainsky & Erik Mathijs, 2016. "Can Organic Farming Reduce Vulnerabilities and Enhance the Resilience of the European Food System? A Critical Assessment Using System Dynamics Structural Thinking Tools," Sustainability, MDPI, vol. 8(10), pages 1-32, September.
    12. Patrick M. Carr & Greta G. Gramig & Mark A. Liebig, 2013. "Impacts of Organic Zero Tillage Systems on Crops, Weeds, and Soil Quality," Sustainability, MDPI, vol. 5(7), pages 1-30, July.
    13. J. Haberle & P. Svoboda & I. Raimanová, 2008. "The effect of post-anthesis water supply on grain nitrogen concentration and grain nitrogen Šeld of winter wheat," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 54(7), pages 304-312.
    14. Marie Lassalas & Sabine Duvaleix & Laure Latruffe, 2024. "The technical and economic effects of biodiversity standards on wheat production," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 51(2), pages 275-308.
    15. Rana Shahzad Noor & Fiaz Hussain & Muhammad Umar Farooq & Muhammad Umair, 2020. "Cost And Profitability Analysis Of Cherry Production: The Case Study Of District Quetta, Pakistan," Big Data In Agriculture (BDA), Zibeline International Publishing, vol. 2(2), pages 74-80, June.
    16. Debuschewitz, Emil & Sanders, Jürn, 2021. "Bewertung der Umweltwirkungen des ökologischen Landbaus im Kontext der kontroversen wissenschaftlichen Diskurse," 61st Annual Conference, Berlin, Germany, September 22-24, 2021 317076, German Association of Agricultural Economists (GEWISOLA).
    17. I. P. Sapinas & L. K. Abbott, 2021. "Soil Fertility Management Based on Certified Organic Agriculture Standards - a Review," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 9(2), pages 1-1, December.
    18. Carlson, Andrea & Greene, Catherine & Raszap Skorbiansky, Sharon & Hitaj, Claudia & Ha, Kim & Cavigelli, Michel & Ferrier, Peyton & McBride, William, 2023. "U.S. Organic Production, Markets, Consumers, and Policy, 2000-21," USDA Miscellaneous 333551, United States Department of Agriculture.
    19. Khalid Butti Al Shamsi & Antonio Compagnoni & Giuseppe Timpanaro & Salvatore Luciano Cosentino & Paolo Guarnaccia, 2018. "A Sustainable Organic Production Model for “Food Sovereignty” in the United Arab Emirates and Sicily-Italy," Sustainability, MDPI, vol. 10(3), pages 1-18, February.
    20. ZaDarreyal Wiggins & Dilip Nandwani, 2021. "Innovations of Organic Agriculture, Challenges and Organic Certification in the United States," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 9(3), pages 1-50, December.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jasjnl:v:8:y:2016:i:4:p:140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.