IDEAS home Printed from https://ideas.repec.org/a/ibn/gjhsjl/v15y2023i5p1-11.html
   My bibliography  Save this article

Can Digital Financial Behavior Improve the Effect of Prevention and Control of COVID-19 in China?

Author

Listed:
  • Sheng Wang

Abstract

BACKGROUND- Before December 2019, white lung patients with symptoms similar to COVID-19 pneumonia were found in the United States and some European countries. After COVID-19 pneumonia was diagnosed in Wuhan, China, in December 2019, almost all countries or regions in the world have successively reported cases of COVID-19 pneumonia. 2020 is the most critical year for all mankind to fight against the new crown pneumonia epidemic. There are many prevention and control measures adopted by various countries or regions for the epidemic of new coronavirus pneumonia, and digital financial behavior (DFB) is an important evaluation index for effective prevention and control measures, which is of very Chinese characteristics. METHODS- DFB is defined by the Digital Financial Inclusion Payment Index, although there may be various versions of the understanding and definition of DFB. The data of the new crown pneumonia is calculated and accumulated through the real-time monitoring data published on the website of the health commissions of 31 provinces and municipalities directly under the central government every month, and is the first-hand raw data. Under the strict prevention and control measures adopted by China, these real-time data on new crown pneumonia released by various places are objective, true and comprehensive. The analysis methods adopted in this paper mainly include statistical analysis methods, econometric models such as logarithmic linear regression model, exponential model simulation method, etc. RESULTS- The diagnosis of COVID-19 pneumonia infection is a random variable, and there is a nonlinear random exponential relationship between it and DFB. The empirical study found that the least square estimation of COVID-19 infection diagnosis and DFB constitute a statistically significant exponential function relationship. This index model has successfully measured the effect of COVID-19 epidemic prevention and control in China with statistical significance, which indicates that DFB plays a positive role in improving the effect of COVID-19 epidemic prevention and control in China. The nonlinear exponential relationship between individuals with cumulative diagnosis of COVID-19 infection and DFB in 31 provinces and municipalities directly under the Central Government of China, excluding Hong Kong Special Administrative Region, Macao Special Administrative Region and Taiwan Province, has proved that this relationship is robust. Through regression analysis, it is found that the number of people infected with COVID-19 is significantly increased by one person for every additional unit of DFB. However, the similarity of DFB in 31 provinces and municipalities directly under the Central Government of China indicates that the number of COVID-19 infected individuals in 31 provinces and municipalities directly under the Central Government is increasing slowly. This result is very consistent with the distribution of actual statistical data, although the relevant data have certain regional differences. CONCLUSION- With extensive and in-depth practical basis and practical significance in all levels of Chinese society, DFB can measure the positive effect of the prevention and control of COVID-19 epidemic in China. Based on the positive role of DFB, there is every reason to believe that DFB will be one of the indispensable and trustworthy factors to improve its prevention and control performance in the face of similar social highly infectious diseases that may occur in the future. Whether the research method here has wider applicability, that is, whether it has a statistically significant positive effect on the prevention and control of epidemics in other countries or regions, should be a question that needs to be further explored in the future.

Suggested Citation

  • Sheng Wang, 2023. "Can Digital Financial Behavior Improve the Effect of Prevention and Control of COVID-19 in China?," Global Journal of Health Science, Canadian Center of Science and Education, vol. 15(5), pages 1-11, May.
  • Handle: RePEc:ibn:gjhsjl:v:15:y:2023:i:5:p:1-11
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/gjhs/article/download/0/0/48744/52519
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/gjhs/article/view/0/48744
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seth J. Zost & Pavlo Gilchuk & James Brett Case & Elad Binshtein & Rita E. Chen & Joseph P. Nkolola & Alexandra Schäfer & Joseph X. Reidy & Andrew Trivette & Rachel S. Nargi & Rachel E. Sutton & Navee, 2020. "Potently neutralizing and protective human antibodies against SARS-CoV-2," Nature, Nature, vol. 584(7821), pages 443-449, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kevin J. Kramer & Erin M. Wilfong & Kelsey Voss & Sierra M. Barone & Andrea R. Shiakolas & Nagarajan Raju & Caroline E. Roe & Naveenchandra Suryadevara & Lauren M. Walker & Steven C. Wall & Ariana Pau, 2022. "Single-cell profiling of the antigen-specific response to BNT162b2 SARS-CoV-2 RNA vaccine," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    2. Wenkai Han & Ningning Chen & Xinzhou Xu & Adil Sahil & Juexiao Zhou & Zhongxiao Li & Huawen Zhong & Elva Gao & Ruochi Zhang & Yu Wang & Shiwei Sun & Peter Pak-Hang Cheung & Xin Gao, 2023. "Predicting the antigenic evolution of SARS-COV-2 with deep learning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Ting Lu & Rui Ma & Wenjuan Dong & Kun-Yu Teng & Daniel S. Kollath & Zhiyao Li & Jinhee Yi & Christian Bustillos & Shoubao Ma & Lei Tian & Anthony G. Mansour & Zhenlong Li & Erik W. Settles & Jianying , 2022. "Off-the-shelf CAR natural killer cells secreting IL-15 target spike in treating COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Elizabeth M. Parzych & Jianqiu Du & Ali R. Ali & Katherine Schultheis & Drew Frase & Trevor R. F. Smith & Jiayan Cui & Neethu Chokkalingam & Nicholas J. Tursi & Viviane M. Andrade & Bryce M. Warner & , 2022. "DNA-delivered antibody cocktail exhibits improved pharmacokinetics and confers prophylactic protection against SARS-CoV-2," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. James Brett Case & Samantha Mackin & John M. Errico & Zhenlu Chong & Emily A. Madden & Bradley Whitener & Barbara Guarino & Michael A. Schmid & Kim Rosenthal & Kuishu Ren & Ha V. Dang & Gyorgy Snell &, 2022. "Resilience of S309 and AZD7442 monoclonal antibody treatments against infection by SARS-CoV-2 Omicron lineage strains," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Yanqun Wang & An Yan & Deyong Song & Maoqin Duan & Chuangchuang Dong & Jiantao Chen & Zihe Jiang & Yuanzhu Gao & Muding Rao & Jianxia Feng & Zhaoyong Zhang & Ruxi Qi & Xiaomin Ma & Hong Liu & Beibei Y, 2024. "Identification of a highly conserved neutralizing epitope within the RBD region of diverse SARS-CoV-2 variants," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Tingting Li & Xiaojian Han & Chenjian Gu & Hangtian Guo & Huajun Zhang & Yingming Wang & Chao Hu & Kai Wang & Fengjiang Liu & Feiyang Luo & Yanan Zhang & Jie Hu & Wang Wang & Shenglong Li & Yanan Hao , 2021. "Potent SARS-CoV-2 neutralizing antibodies with protective efficacy against newly emerged mutational variants," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    8. Emanuele Andreano & Ida Paciello & Giulio Pierleoni & Giuseppe Maccari & Giada Antonelli & Valentina Abbiento & Piero Pileri & Linda Benincasa & Ginevra Giglioli & Giulia Piccini & Concetta De Santi &, 2023. "mRNA vaccines and hybrid immunity use different B cell germlines against Omicron BA.4 and BA.5," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Yifan Wang & Caixuan Liu & Chao Zhang & Yanxing Wang & Qin Hong & Shiqi Xu & Zuyang Li & Yong Yang & Zhong Huang & Yao Cong, 2022. "Structural basis for SARS-CoV-2 Delta variant recognition of ACE2 receptor and broadly neutralizing antibodies," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Omar Nyabi & Mostafa Bentahir & Jérôme Ambroise & Bertrand Bearzatto & Nawfal Chibani & Benjamin Smits & Jean François Durant & Aleksandr Vybornov & Olivier Thellin & Benaissa El Moualij & Jean-Luc Ga, 2021. "Diagnostic Value of IgM and IgG Detection in COVID-19 Diagnosis by the Mobile Laboratory B-LiFE: A Massive Testing Strategy in the Piedmont Region," IJERPH, MDPI, vol. 18(7), pages 1-10, March.
    11. Fulvio Lauretani & Marco Salvi & Irene Zucchini & Crescenzo Testa & Chiara Cattabiani & Arianna Arisi & Marcello Maggio, 2023. "Relationship between Vitamin D and Immunity in Older People with COVID-19," IJERPH, MDPI, vol. 20(8), pages 1-19, April.
    12. Lei Peng & Yingxia Hu & Madeleine C. Mankowski & Ping Ren & Rita E. Chen & Jin Wei & Min Zhao & Tongqing Li & Therese Tripler & Lupeng Ye & Ryan D. Chow & Zhenhao Fang & Chunxiang Wu & Matthew B. Dong, 2022. "Monospecific and bispecific monoclonal SARS-CoV-2 neutralizing antibodies that maintain potency against B.1.617," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    13. Andrew C. Hunt & Bastian Vögeli & Ahmed O. Hassan & Laura Guerrero & Weston Kightlinger & Danielle J. Yoesep & Antje Krüger & Madison DeWinter & Michael S. Diamond & Ashty S. Karim & Michael C. Jewett, 2023. "A rapid cell-free expression and screening platform for antibody discovery," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Yu Guo & Guangshun Zhang & Qi Yang & Xiaowei Xie & Yang Lu & Xuelian Cheng & Hui Wang & Jingxi Liang & Jielin Tang & Yuxin Gao & Hang Shang & Jun Dai & Yongxia Shi & Jiaxi Zhou & Jun Zhou & Hangtian G, 2023. "Discovery and characterization of potent pan-variant SARS-CoV-2 neutralizing antibodies from individuals with Omicron breakthrough infection," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    15. Thierry Bihan & Teresa Nunez de Villavicencio Diaz & Chelsea Reitzel & Victoria Lange & Minyoung Park & Emma Beadle & Lin Wu & Marko Jovic & Rosalin M. Dubois & Amber L. Couzens & Jin Duan & Xiaobing , 2024. "De novo protein sequencing of antibodies for identification of neutralizing antibodies in human plasma post SARS-CoV-2 vaccination," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Chang Liu & Raksha Das & Aiste Dijokaite-Guraliuc & Daming Zhou & Alexander J. Mentzer & Piyada Supasa & Muneeswaran Selvaraj & Helen M. E. Duyvesteyn & Thomas G. Ritter & Nigel Temperton & Paul Klene, 2024. "Emerging variants develop total escape from potent monoclonal antibodies induced by BA.4/5 infection," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Pauline Maisonnasse & Yoann Aldon & Aurélien Marc & Romain Marlin & Nathalie Dereuddre-Bosquet & Natalia A. Kuzmina & Alec W. Freyn & Jonne L. Snitselaar & Antonio Gonçalves & Tom G. Caniels & Judith , 2021. "COVA1-18 neutralizing antibody protects against SARS-CoV-2 in three preclinical models," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    18. Daniel N. Streblow & Alec J. Hirsch & Jeffrey J. Stanton & Anne D. Lewis & Lois Colgin & Ann J. Hessell & Craig N. Kreklywich & Jessica L. Smith & William F. Sutton & David Chauvin & Jennifer Woo & Be, 2023. "Aerosol delivery of SARS-CoV-2 human monoclonal antibodies in macaques limits viral replication and lung pathology," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    19. Mathieu Claireaux & Tom G. Caniels & Marlon Gast & Julianna Han & Denise Guerra & Gius Kerster & Barbera D. C. Schaik & Aldo Jongejan & Angela I. Schriek & Marloes Grobben & Philip J. M. Brouwer & Kar, 2022. "A public antibody class recognizes an S2 epitope exposed on open conformations of SARS-CoV-2 spike," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    20. Nathaniel S. Chapman & Ruben J. G. Hulswit & Jonna L. B. Westover & Robert Stass & Guido C. Paesen & Elad Binshtein & Joseph X. Reidy & Taylor B. Engdahl & Laura S. Handal & Alejandra Flores & Brian B, 2023. "Multifunctional human monoclonal antibody combination mediates protection against Rift Valley fever virus at low doses," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:gjhsjl:v:15:y:2023:i:5:p:1-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.