IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31615-7.html
   My bibliography  Save this article

Resilience of S309 and AZD7442 monoclonal antibody treatments against infection by SARS-CoV-2 Omicron lineage strains

Author

Listed:
  • James Brett Case

    (Washington University School of Medicine)

  • Samantha Mackin

    (Washington University School of Medicine
    Washington University School of Medicine)

  • John M. Errico

    (Washington University School of Medicine)

  • Zhenlu Chong

    (Washington University School of Medicine)

  • Emily A. Madden

    (Washington University School of Medicine)

  • Bradley Whitener

    (Washington University School of Medicine)

  • Barbara Guarino

    (a subsidiary of Vir Biotechnology)

  • Michael A. Schmid

    (a subsidiary of Vir Biotechnology)

  • Kim Rosenthal

    (BioPharmaceuticals R&D, AstraZeneca)

  • Kuishu Ren

    (BioPharmaceuticals R&D, AstraZeneca)

  • Ha V. Dang

    (Vir Biotechnology)

  • Gyorgy Snell

    (Vir Biotechnology)

  • Ana Jung

    (Washington University School of Medicine)

  • Lindsay Droit

    (Washington University School of Medicine)

  • Scott A. Handley

    (Washington University School of Medicine)

  • Peter J. Halfmann

    (University of Wisconsin-Madison)

  • Yoshihiro Kawaoka

    (University of Wisconsin-Madison
    University of Tokyo
    National Center for Global Health and Medicine Research Institute)

  • James E. Crowe

    (Vanderbilt University Medical Center
    Vanderbilt University Medical Center
    Vanderbilt University Medical Center)

  • Daved H. Fremont

    (Washington University School of Medicine
    Washington University School of Medicine
    Washington University School of Medicine)

  • Herbert W. Virgin

    (Washington University School of Medicine
    Vir Biotechnology
    University of Texas Southwestern Medical Center)

  • Yueh-Ming Loo

    (BioPharmaceuticals R&D, AstraZeneca)

  • Mark T. Esser

    (BioPharmaceuticals R&D, AstraZeneca)

  • Lisa A. Purcell

    (Vir Biotechnology)

  • Davide Corti

    (a subsidiary of Vir Biotechnology)

  • Michael S. Diamond

    (Washington University School of Medicine
    Washington University School of Medicine
    Washington University School of Medicine
    Washington University School of Medicine)

Abstract

Omicron variant strains encode large numbers of changes in the spike protein compared to historical SARS-CoV-2 isolates. Although in vitro studies have suggested that several monoclonal antibody therapies lose neutralizing activity against Omicron variants, the effects in vivo remain largely unknown. Here, we report on the protective efficacy against three SARS-CoV-2 Omicron lineage strains (BA.1, BA.1.1, and BA.2) of two monoclonal antibody therapeutics (S309 [Vir Biotechnology] monotherapy and AZD7442 [AstraZeneca] combination), which correspond to ones used to treat or prevent SARS-CoV-2 infections in humans. Despite losses in neutralization potency in cell culture, S309 or AZD7442 treatments reduced BA.1, BA.1.1, and BA.2 lung infection in susceptible mice that express human ACE2 (K18-hACE2) in prophylactic and therapeutic settings. Correlation analyses between in vitro neutralizing activity and reductions in viral burden in K18-hACE2 or human FcγR transgenic mice suggest that S309 and AZD7442 have different mechanisms of protection against Omicron variants, with S309 utilizing Fc effector function interactions and AZD7442 acting principally by direct neutralization. Our data in mice demonstrate the resilience of S309 and AZD7442 mAbs against emerging SARS-CoV-2 variant strains and provide insight into the relationship between loss of antibody neutralization potency and retained protection in vivo.

Suggested Citation

  • James Brett Case & Samantha Mackin & John M. Errico & Zhenlu Chong & Emily A. Madden & Bradley Whitener & Barbara Guarino & Michael A. Schmid & Kim Rosenthal & Kuishu Ren & Ha V. Dang & Gyorgy Snell &, 2022. "Resilience of S309 and AZD7442 monoclonal antibody treatments against infection by SARS-CoV-2 Omicron lineage strains," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31615-7
    DOI: 10.1038/s41467-022-31615-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31615-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31615-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rita E. Chen & Emma S. Winkler & James Brett Case & Ishmael D. Aziati & Traci L. Bricker & Astha Joshi & Tamarand L. Darling & Baoling Ying & John M. Errico & Swathi Shrihari & Laura A. VanBlargan & X, 2021. "In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains," Nature, Nature, vol. 596(7870), pages 103-108, August.
    2. Seth J. Zost & Pavlo Gilchuk & James Brett Case & Elad Binshtein & Rita E. Chen & Joseph P. Nkolola & Alexandra Schäfer & Joseph X. Reidy & Andrew Trivette & Rachel S. Nargi & Rachel E. Sutton & Navee, 2020. "Potently neutralizing and protective human antibodies against SARS-CoV-2," Nature, Nature, vol. 584(7821), pages 443-449, August.
    3. Jun Lan & Jiwan Ge & Jinfang Yu & Sisi Shan & Huan Zhou & Shilong Fan & Qi Zhang & Xuanling Shi & Qisheng Wang & Linqi Zhang & Xinquan Wang, 2020. "Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor," Nature, Nature, vol. 581(7807), pages 215-220, May.
    4. Peter J. Halfmann & Shun Iida & Kiyoko Iwatsuki-Horimoto & Tadashi Maemura & Maki Kiso & Suzanne M. Scheaffer & Tamarand L. Darling & Astha Joshi & Samantha Loeber & Gagandeep Singh & Stephanie L. Fos, 2022. "SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters," Nature, Nature, vol. 603(7902), pages 687-692, March.
    5. Dora Pinto & Young-Jun Park & Martina Beltramello & Alexandra C. Walls & M. Alejandra Tortorici & Siro Bianchi & Stefano Jaconi & Katja Culap & Fabrizia Zatta & Anna De Marco & Alessia Peter & Barbara, 2020. "Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody," Nature, Nature, vol. 583(7815), pages 290-295, July.
    6. Elisabetta Cameroni & John E. Bowen & Laura E. Rosen & Christian Saliba & Samantha K. Zepeda & Katja Culap & Dora Pinto & Laura A. VanBlargan & Anna Marco & Julia Iulio & Fabrizia Zatta & Hannah Kaise, 2022. "Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift," Nature, Nature, vol. 602(7898), pages 664-670, February.
    7. Rachel Yamin & Andrew T. Jones & Hans-Heinrich Hoffmann & Alexandra Schäfer & Kevin S. Kao & Rebecca L. Francis & Timothy P. Sheahan & Ralph S. Baric & Charles M. Rice & Jeffrey V. Ravetch & Stylianos, 2021. "Fc-engineered antibody therapeutics with improved anti-SARS-CoV-2 efficacy," Nature, Nature, vol. 599(7885), pages 465-470, November.
    8. Xiuyuan Ou & Yan Liu & Xiaobo Lei & Pei Li & Dan Mi & Lili Ren & Li Guo & Ruixuan Guo & Ting Chen & Jiaxin Hu & Zichun Xiang & Zhixia Mu & Xing Chen & Jieyong Chen & Keping Hu & Qi Jin & Jianwei Wang , 2020. "Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikhil Kumar Tulsian & Raghuvamsi Venkata Palur & Xinlei Qian & Yue Gu & Bhuvaneshwari D/O Shunmuganathan & Firdaus Samsudin & Yee Hwa Wong & Jianqing Lin & Kiren Purushotorman & Mary McQueen Kozma & , 2023. "Defining neutralization and allostery by antibodies against COVID-19 variants," Nature Communications, Nature, vol. 14(1), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leire Campos-Mata & Benjamin Trinité & Andrea Modrego & Sonia Tejedor Vaquero & Edwards Pradenas & Anna Pons-Grífols & Natalia Rodrigo Melero & Diego Carlero & Silvia Marfil & César Santiago & Dàlia R, 2024. "A monoclonal antibody targeting a large surface of the receptor binding motif shows pan-neutralizing SARS-CoV-2 activity," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Kuan-Ying A. Huang & Xiaorui Chen & Arpita Mohapatra & Hong Thuy Vy Nguyen & Lisa Schimanski & Tiong Kit Tan & Pramila Rijal & Susan K. Vester & Rory A. Hills & Mark Howarth & Jennifer R. Keeffe & Ale, 2023. "Structural basis for a conserved neutralization epitope on the receptor-binding domain of SARS-CoV-2," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Tingting Li & Xiaojian Han & Chenjian Gu & Hangtian Guo & Huajun Zhang & Yingming Wang & Chao Hu & Kai Wang & Fengjiang Liu & Feiyang Luo & Yanan Zhang & Jie Hu & Wang Wang & Shenglong Li & Yanan Hao , 2021. "Potent SARS-CoV-2 neutralizing antibodies with protective efficacy against newly emerged mutational variants," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Yifan Wang & Caixuan Liu & Chao Zhang & Yanxing Wang & Qin Hong & Shiqi Xu & Zuyang Li & Yong Yang & Zhong Huang & Yao Cong, 2022. "Structural basis for SARS-CoV-2 Delta variant recognition of ACE2 receptor and broadly neutralizing antibodies," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Lei Peng & Yingxia Hu & Madeleine C. Mankowski & Ping Ren & Rita E. Chen & Jin Wei & Min Zhao & Tongqing Li & Therese Tripler & Lupeng Ye & Ryan D. Chow & Zhenhao Fang & Chunxiang Wu & Matthew B. Dong, 2022. "Monospecific and bispecific monoclonal SARS-CoV-2 neutralizing antibodies that maintain potency against B.1.617," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. Mingxi Li & Yifei Ren & Zhen Qin Aw & Bo Chen & Ziqing Yang & Yuqing Lei & Lin Cheng & Qingtai Liang & Junxian Hong & Yiling Yang & Jing Chen & Yi Hao Wong & Jing Wei & Sisi Shan & Senyan Zhang & Jiwa, 2022. "Broadly neutralizing and protective nanobodies against SARS-CoV-2 Omicron subvariants BA.1, BA.2, and BA.4/5 and diverse sarbecoviruses," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    7. Chang Liu & Raksha Das & Aiste Dijokaite-Guraliuc & Daming Zhou & Alexander J. Mentzer & Piyada Supasa & Muneeswaran Selvaraj & Helen M. E. Duyvesteyn & Thomas G. Ritter & Nigel Temperton & Paul Klene, 2024. "Emerging variants develop total escape from potent monoclonal antibodies induced by BA.4/5 infection," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Daming Zhou & Piyada Supasa & Chang Liu & Aiste Dijokaite-Guraliuc & Helen M. E. Duyvesteyn & Muneeswaran Selvaraj & Alexander J. Mentzer & Raksha Das & Wanwisa Dejnirattisai & Nigel Temperton & Paul , 2024. "The SARS-CoV-2 neutralizing antibody response to SD1 and its evasion by BA.2.86," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Biao Zhou & Runhong Zhou & Bingjie Tang & Jasper Fuk-Woo Chan & Mengxiao Luo & Qiaoli Peng & Shuofeng Yuan & Hang Liu & Bobo Wing-Yee Mok & Bohao Chen & Pui Wang & Vincent Kwok-Man Poon & Hin Chu & Ch, 2022. "A broadly neutralizing antibody protects Syrian hamsters against SARS-CoV-2 Omicron challenge," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Elizabeth M. Parzych & Jianqiu Du & Ali R. Ali & Katherine Schultheis & Drew Frase & Trevor R. F. Smith & Jiayan Cui & Neethu Chokkalingam & Nicholas J. Tursi & Viviane M. Andrade & Bryce M. Warner & , 2022. "DNA-delivered antibody cocktail exhibits improved pharmacokinetics and confers prophylactic protection against SARS-CoV-2," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Emanuele Andreano & Ida Paciello & Silvia Marchese & Lorena Donnici & Giulio Pierleoni & Giulia Piccini & Noemi Manganaro & Elisa Pantano & Valentina Abbiento & Piero Pileri & Linda Benincasa & Ginevr, 2022. "Anatomy of Omicron BA.1 and BA.2 neutralizing antibodies in COVID-19 mRNA vaccinees," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Tomokazu Tamura & Jumpei Ito & Keiya Uriu & Jiri Zahradnik & Izumi Kida & Yuki Anraku & Hesham Nasser & Maya Shofa & Yoshitaka Oda & Spyros Lytras & Naganori Nao & Yukari Itakura & Sayaka Deguchi & Ri, 2023. "Virological characteristics of the SARS-CoV-2 XBB variant derived from recombination of two Omicron subvariants," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    13. Saya Moriyama & Yuki Anraku & Shunta Taminishi & Yu Adachi & Daisuke Kuroda & Shunsuke Kita & Yusuke Higuchi & Yuhei Kirita & Ryutaro Kotaki & Keisuke Tonouchi & Kohei Yumoto & Tateki Suzuki & Taiyou , 2023. "Structural delineation and computational design of SARS-CoV-2-neutralizing antibodies against Omicron subvariants," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    14. Yanqun Wang & An Yan & Deyong Song & Maoqin Duan & Chuangchuang Dong & Jiantao Chen & Zihe Jiang & Yuanzhu Gao & Muding Rao & Jianxia Feng & Zhaoyong Zhang & Ruxi Qi & Xiaomin Ma & Hong Liu & Beibei Y, 2024. "Identification of a highly conserved neutralizing epitope within the RBD region of diverse SARS-CoV-2 variants," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Yingdan Wang & Aihua Hao & Ping Ji & Yunping Ma & Zhaoyong Zhang & Jiali Chen & Qiyu Mao & Xinyi Xiong & Palizhati Rehati & Yajie Wang & Yanqun Wang & Yumei Wen & Lu Lu & Zhenguo Chen & Jincun Zhao & , 2024. "A bispecific antibody exhibits broad neutralization against SARS-CoV-2 Omicron variants XBB.1.16, BQ.1.1 and sarbecoviruses," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Emanuele Andreano & Ida Paciello & Giulio Pierleoni & Giuseppe Maccari & Giada Antonelli & Valentina Abbiento & Piero Pileri & Linda Benincasa & Ginevra Giglioli & Giulia Piccini & Concetta De Santi &, 2023. "mRNA vaccines and hybrid immunity use different B cell germlines against Omicron BA.4 and BA.5," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    17. Andrew P. Hederman & Harini Natarajan & Leo Heyndrickx & Kevin K. Ariën & Joshua A. Wiener & Peter F. Wright & Evan M. Bloch & Aaron A. R. Tobian & Andrew D. Redd & Joel N. Blankson & Amihai Rottenstr, 2023. "SARS-CoV-2 vaccination elicits broad and potent antibody effector functions to variants of concern in vulnerable populations," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Andrew C. Hunt & Bastian Vögeli & Ahmed O. Hassan & Laura Guerrero & Weston Kightlinger & Danielle J. Yoesep & Antje Krüger & Madison DeWinter & Michael S. Diamond & Ashty S. Karim & Michael C. Jewett, 2023. "A rapid cell-free expression and screening platform for antibody discovery," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    19. Yuanchen Liu & Xiaoyu Zhao & Jialu Shi & Yajie Wang & Huan Liu & Ye-Fan Hu & Bingjie Hu & Huiping Shuai & Terrence Tsz-Tai Yuen & Yue Chai & Feifei Liu & Hua-Rui Gong & Jiayan Li & Xun Wang & Shujun J, 2024. "Lineage-specific pathogenicity, immune evasion, and virological features of SARS-CoV-2 BA.2.86/JN.1 and EG.5.1/HK.3," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    20. Daniel N. Streblow & Alec J. Hirsch & Jeffrey J. Stanton & Anne D. Lewis & Lois Colgin & Ann J. Hessell & Craig N. Kreklywich & Jessica L. Smith & William F. Sutton & David Chauvin & Jennifer Woo & Be, 2023. "Aerosol delivery of SARS-CoV-2 human monoclonal antibodies in macaques limits viral replication and lung pathology," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31615-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.