IDEAS home Printed from https://ideas.repec.org/a/hin/complx/7436712.html
   My bibliography  Save this article

Evolutionary Search with Multiple Utopian Reference Points in Decomposition-Based Multiobjective Optimization

Author

Listed:
  • Wu Lin
  • Qiuzhen Lin
  • Zexuan Zhu
  • Jianqiang Li
  • Jianyong Chen
  • Zhong Ming

Abstract

Decomposition-based multiobjective evolutionary algorithms (MOEA/Ds) have become increasingly popular in recent years. In these MOEA/Ds, evolutionary search is guided by the used weight vectors in decomposition function to approximate the Pareto front (PF). Generally, the decomposition function will be constructed by the weight vectors and the reference point, which play an important role to balance convergence and diversity during the evolutionary search. However, in most existing MOEA/Ds, only one ideal point is used as the reference point for all the evolutionary search, which is harmful to search the entire PF when tackling the problems with difficult-to-approximate PF boundaries. To address the above problem, this paper proposes an evolutionary search method with multiple utopian reference points in MOEA/Ds. Similar to the existing MOEA/Ds, each solution is associated with one weight vector, which provides an evolutionary search direction, while the novelty of our approach is to use multiple utopian reference points, which can provide evolutionary search directions for different weight vectors. Corner solutions are used to approximate the nadir point and then multiple utopian reference points for evolutionary search can be constructed based on the ideal point and the nadir point, which are uniformly distributed on the coordinate axis or planes. The use of these utopian points can prevent solutions to gather in the same region of PF and helps to strike a good balance of exploration and exploitation in the search space. The performance of our proposed algorithm is validated on tackling 16 recently proposed test problems with difficult-to-approximate PF boundaries and empirically compared to eight state-of-the-art multiobjective evolutionary algorithms. The experimental results demonstrate the superiority of the proposed algorithm on solving most of the test problems adopted.

Suggested Citation

  • Wu Lin & Qiuzhen Lin & Zexuan Zhu & Jianqiang Li & Jianyong Chen & Zhong Ming, 2019. "Evolutionary Search with Multiple Utopian Reference Points in Decomposition-Based Multiobjective Optimization," Complexity, Hindawi, vol. 2019, pages 1-22, April.
  • Handle: RePEc:hin:complx:7436712
    DOI: 10.1155/2019/7436712
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/7436712.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/7436712.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/7436712?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Beume, Nicola & Naujoks, Boris & Emmerich, Michael, 2007. "SMS-EMOA: Multiobjective selection based on dominated hypervolume," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1653-1669, September.
    2. Yadong Yu & Haiping Ma & Mei Yu & Sengang Ye & Xiaolei Chen, 2018. "Multipopulation Management in Evolutionary Algorithms and Application to Complex Warehouse Scheduling Problems," Complexity, Hindawi, vol. 2018, pages 1-14, April.
    3. Qiuzhen Lin & Xiaozhou Wang & Bishan Hu & Lijia Ma & Fei Chen & Jianqiang Li & Carlos A. Coello Coello, 2018. "Multiobjective Personalized Recommendation Algorithm Using Extreme Point Guided Evolutionary Computation," Complexity, Hindawi, vol. 2018, pages 1-18, November.
    4. Wang, Hsiao-Fan & Chen, Ying-Yen, 2013. "A coevolutionary algorithm for the flexible delivery and pickup problem with time windows," International Journal of Production Economics, Elsevier, vol. 141(1), pages 4-13.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liagkouras, Konstantinos & Metaxiotis, Konstantinos, 2021. "Improving multi-objective algorithms performance by emulating behaviors from the human social analogue in candidate solutions," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1019-1036.
    2. Gong, Wenyin & Cai, Zhihua, 2009. "An improved multiobjective differential evolution based on Pareto-adaptive [epsilon]-dominance and orthogonal design," European Journal of Operational Research, Elsevier, vol. 198(2), pages 576-601, October.
    3. Andrea Ponti & Antonio Candelieri & Ilaria Giordani & Francesco Archetti, 2023. "Intrusion Detection in Networks by Wasserstein Enabled Many-Objective Evolutionary Algorithms," Mathematics, MDPI, vol. 11(10), pages 1-14, May.
    4. Yunsong Han & Hong Yu & Cheng Sun, 2017. "Simulation-Based Multiobjective Optimization of Timber-Glass Residential Buildings in Severe Cold Regions," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    5. Kafle, Nabin & Zou, Bo & Lin, Jane, 2017. "Design and modeling of a crowdsource-enabled system for urban parcel relay and delivery," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 62-82.
    6. Sergio Cabello, 2023. "Faster distance-based representative skyline and k-center along pareto front in the plane," Journal of Global Optimization, Springer, vol. 86(2), pages 441-466, June.
    7. Houssem R. E. H. Bouchekara & Yusuf A. Sha’aban & Mohammad S. Shahriar & Makbul A. M. Ramli & Abdullahi A. Mas’ud, 2023. "Wind Farm Layout Optimization/Expansion with Real Wind Turbines Using a Multi-Objective EA Based on an Enhanced Inverted Generational Distance Metric Combined with the Two-Archive Algorithm 2," Sustainability, MDPI, vol. 15(3), pages 1-32, January.
    8. Braun, Marlon & Shukla, Pradyumn, 2024. "On cone-based decompositions of proper Pareto-optimality in multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 317(2), pages 592-602.
    9. Jesús Martínez-Frutos & David Herrero-Pérez, 2016. "Kriging-based infill sampling criterion for constraint handling in multi-objective optimization," Journal of Global Optimization, Springer, vol. 64(1), pages 97-115, January.
    10. Dubois-Lacoste, Jérémie & López-Ibáñez, Manuel & Stützle, Thomas, 2015. "Anytime Pareto local search," European Journal of Operational Research, Elsevier, vol. 243(2), pages 369-385.
    11. Hyoungjin Kim & Meng-Sing Liou, 2013. "New fitness sharing approach for multi-objective genetic algorithms," Journal of Global Optimization, Springer, vol. 55(3), pages 579-595, March.
    12. Miettinen, Kaisa & Molina, Julián & González, Mercedes & Hernández-Díaz, Alfredo & Caballero, Rafael, 2009. "Using box indices in supporting comparison in multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 197(1), pages 17-24, August.
    13. Tangpattanakul, Panwadee & Jozefowiez, Nicolas & Lopez, Pierre, 2015. "A multi-objective local search heuristic for scheduling Earth observations taken by an agile satellite," European Journal of Operational Research, Elsevier, vol. 245(2), pages 542-554.
    14. Luan, Wenpeng & Tian, Longfei & Zhao, Bochao, 2023. "Leveraging hybrid probabilistic multi-objective evolutionary algorithm for dynamic tariff design," Applied Energy, Elsevier, vol. 342(C).
    15. Allmendinger, Richard & Handl, Julia & Knowles, Joshua, 2015. "Multiobjective optimization: When objectives exhibit non-uniform latencies," European Journal of Operational Research, Elsevier, vol. 243(2), pages 497-513.
    16. Weihua Qian & Hang Xu & Houjin Chen & Lvqing Yang & Yuanguo Lin & Rui Xu & Mulan Yang & Minghong Liao, 2024. "A Synergistic MOEA Algorithm with GANs for Complex Data Analysis," Mathematics, MDPI, vol. 12(2), pages 1-30, January.
    17. Rahat, Alma A.M. & Wang, Chunlin & Everson, Richard M. & Fieldsend, Jonathan E., 2018. "Data-driven multi-objective optimisation of coal-fired boiler combustion systems," Applied Energy, Elsevier, vol. 229(C), pages 446-458.
    18. Raimundo, Marcos M. & Ferreira, Paulo A.V. & Von Zuben, Fernando J., 2020. "An extension of the non-inferior set estimation algorithm for many objectives," European Journal of Operational Research, Elsevier, vol. 284(1), pages 53-66.
    19. Xiang Yu & Xueqing Zhang, 2017. "Multiswarm comprehensive learning particle swarm optimization for solving multiobjective optimization problems," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-21, February.
    20. Peng Cheng & Chun-Wei Lin & Jeng-Shyang Pan, 2015. "Use HypE to Hide Association Rules by Adding Items," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-19, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:7436712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.