IDEAS home Printed from https://ideas.repec.org/a/hin/complx/4730957.html
   My bibliography  Save this article

Multipopulation Management in Evolutionary Algorithms and Application to Complex Warehouse Scheduling Problems

Author

Listed:
  • Yadong Yu
  • Haiping Ma
  • Mei Yu
  • Sengang Ye
  • Xiaolei Chen

Abstract

Multipopulation is an effective optimization strategy which is often used in evolutionary algorithms (EAs) to improve optimization performance. However, it is of remarkable difficulty to determine the number of subpopulations during the evolution process for a given problem, which may significantly affect optimization ability of EAs. This paper proposes a simple multipopulation management strategy to dynamically adjust the subpopulation number in different evolution phases throughout the evolution. The proposed method makes use of individual distances in the same subpopulation as well as the population distances between multiple subpopulations to determine the subpopulation number, which is substantial in maintaining population diversity and enhancing the exploration ability. Furthermore, the proposed multipopulation management strategy is embedded into popular EAs to solve real-world complex automated warehouse scheduling problems. Experimental results show that the proposed multipopulation EAs can easily be implemented and outperform other regular single-population algorithms to a large extent.

Suggested Citation

  • Yadong Yu & Haiping Ma & Mei Yu & Sengang Ye & Xiaolei Chen, 2018. "Multipopulation Management in Evolutionary Algorithms and Application to Complex Warehouse Scheduling Problems," Complexity, Hindawi, vol. 2018, pages 1-14, April.
  • Handle: RePEc:hin:complx:4730957
    DOI: 10.1155/2018/4730957
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/4730957.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/4730957.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/4730957?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xin Li & Jingang Lai & Ruoli Tang, 2017. "A Hybrid Constraints Handling Strategy for Multiconstrained Multiobjective Optimization Problem of Microgrid Economical/Environmental Dispatch," Complexity, Hindawi, vol. 2017, pages 1-12, December.
    2. Kunjie Yu & Xin Wang & Zhenlei Wang, 2016. "An improved teaching-learning-based optimization algorithm for numerical and engineering optimization problems," Journal of Intelligent Manufacturing, Springer, vol. 27(4), pages 831-843, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu Lin & Qiuzhen Lin & Zexuan Zhu & Jianqiang Li & Jianyong Chen & Zhong Ming, 2019. "Evolutionary Search with Multiple Utopian Reference Points in Decomposition-Based Multiobjective Optimization," Complexity, Hindawi, vol. 2019, pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    2. Ivona Brajević & Jelena Ignjatović, 2019. "An upgraded firefly algorithm with feasibility-based rules for constrained engineering optimization problems," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2545-2574, August.
    3. Ali Wagdy Mohamed, 2018. "A novel differential evolution algorithm for solving constrained engineering optimization problems," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 659-692, March.
    4. Shunfu Jin & Xiuchen Qie & Wenjuan Zhao & Wuyi Yue & Yutaka Takahashi, 2020. "A clustered virtual machine allocation strategy based on a sleep-mode with wake-up threshold in a cloud environment," Annals of Operations Research, Springer, vol. 293(1), pages 193-212, October.
    5. Lin Sun & Suisui Chen & Jiucheng Xu & Yun Tian, 2019. "Improved Monarch Butterfly Optimization Algorithm Based on Opposition-Based Learning and Random Local Perturbation," Complexity, Hindawi, vol. 2019, pages 1-20, February.
    6. Yuchao Su & Qiuzhen Lin & Jia Wang & Jianqiang Li & Jianyong Chen & Zhong Ming, 2019. "A Constrained Solution Update Strategy for Multiobjective Evolutionary Algorithm Based on Decomposition," Complexity, Hindawi, vol. 2019, pages 1-11, May.
    7. Bo Wang & Yanjing Li & Fei Yang & Xiaohua Xia, 2019. "A Competitive Swarm Optimizer-Based Technoeconomic Optimization with Appliance Scheduling in Domestic PV-Battery Hybrid Systems," Complexity, Hindawi, vol. 2019, pages 1-15, October.
    8. Yu, Kunjie & While, Lyndon & Reynolds, Mark & Wang, Xin & Liang, J.J. & Zhao, Liang & Wang, Zhenlei, 2018. "Multiobjective optimization of ethylene cracking furnace system using self-adaptive multiobjective teaching-learning-based optimization," Energy, Elsevier, vol. 148(C), pages 469-481.
    9. Huazan Liu & Yukang He & Qichao Hu & Jianfei Guo & Lan Luo, 2020. "Risk management system and intelligent decision-making for prefabricated building project under deep learning modified teaching-learning-based optimization," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-15, July.
    10. He, Quanqin & Liu, Hao & Ding, Guiyan & Tu, Liangping, 2023. "A modified Lévy flight distribution for solving high-dimensional numerical optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 376-400.
    11. Fei Han & Yu-Wen-Tian Sun & Qing-Hua Ling, 2018. "An Improved Multiobjective Quantum-Behaved Particle Swarm Optimization Based on Double Search Strategy and Circular Transposon Mechanism," Complexity, Hindawi, vol. 2018, pages 1-22, November.
    12. Hongli Yu & Yuelin Gao & Le Wang & Jiangtao Meng, 2020. "A Hybrid Particle Swarm Optimization Algorithm Enhanced with Nonlinear Inertial Weight and Gaussian Mutation for Job Shop Scheduling Problems," Mathematics, MDPI, vol. 8(8), pages 1-17, August.
    13. Yu, Kunjie & Qu, Boyang & Yue, Caitong & Ge, Shilei & Chen, Xu & Liang, Jing, 2019. "A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module," Applied Energy, Elsevier, vol. 237(C), pages 241-257.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:4730957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.