IDEAS home Printed from https://ideas.repec.org/a/hin/complx/7120691.html
   My bibliography  Save this article

Sparse Learning of the Disease Severity Score for High-Dimensional Data

Author

Listed:
  • Ivan Stojkovic
  • Zoran Obradovic

Abstract

Learning disease severity scores automatically from collected measurements may aid in the quality of both healthcare and scientific understanding. Some steps in that direction have been taken and machine learning algorithms for extracting scoring functions from data have been proposed. Given the rapid increase in both quantity and diversity of data measured and stored, the large amount of information is becoming one of the challenges for learning algorithms. In this work, we investigated the direction of the problem where the dimensionality of measured variables is large. Learning the severity score in such cases brings the issue of which of measured features are relevant. We have proposed a novel approach by combining desirable properties of existing formulations, which compares favorably to alternatives in accuracy and especially in the robustness of the learned scoring function. The proposed formulation has a nonsmooth penalty that induces sparsity. This problem is solved by addressing a dual formulation which is smooth and allows an efficient optimization. The proposed approach might be used as an effective and reliable tool for both scoring function learning and biomarker discovery, as demonstrated by identifying a stable set of genes related to influenza symptoms’ severity, which are enriched in immune-related processes.

Suggested Citation

  • Ivan Stojkovic & Zoran Obradovic, 2017. "Sparse Learning of the Disease Severity Score for High-Dimensional Data," Complexity, Hindawi, vol. 2017, pages 1-11, December.
  • Handle: RePEc:hin:complx:7120691
    DOI: 10.1155/2017/7120691
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2017/7120691.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2017/7120691.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/7120691?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert Tibshirani, 2011. "Regression shrinkage and selection via the lasso: a retrospective," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(3), pages 273-282, June.
    2. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    3. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    2. Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Post-Print halshs-00917797, HAL.
    3. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Risks, MDPI, vol. 6(2), pages 1-20, April.
    4. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    5. Xing, Li-Min & Zhang, Yue-Jun, 2022. "Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?," Energy Economics, Elsevier, vol. 110(C).
    6. Wei Tang & Steven L Bressler & Chad M Sylvester & Gordon L Shulman & Maurizio Corbetta, 2012. "Measuring Granger Causality between Cortical Regions from Voxelwise fMRI BOLD Signals with LASSO," PLOS Computational Biology, Public Library of Science, vol. 8(5), pages 1-14, May.
    7. Yanfang Zhang & Chuanhua Wei & Xiaolin Liu, 2022. "Group Logistic Regression Models with l p,q Regularization," Mathematics, MDPI, vol. 10(13), pages 1-15, June.
    8. Xingcai Zhou & Yu Xiang, 2022. "ADMM-Based Differential Privacy Learning for Penalized Quantile Regression on Distributed Functional Data," Mathematics, MDPI, vol. 10(16), pages 1-28, August.
    9. Hsu, David, 2015. "Identifying key variables and interactions in statistical models of building energy consumption using regularization," Energy, Elsevier, vol. 83(C), pages 144-155.
    10. Chen, Ya & Tsionas, Mike G. & Zelenyuk, Valentin, 2021. "LASSO+DEA for small and big wide data," Omega, Elsevier, vol. 102(C).
    11. Tanin Sirimongkolkasem & Reza Drikvandi, 2019. "On Regularisation Methods for Analysis of High Dimensional Data," Annals of Data Science, Springer, vol. 6(4), pages 737-763, December.
    12. Ya Chen & Mike Tsionas & Valentin Zelenyuk, 2020. "LASSO DEA for small and big data," CEPA Working Papers Series WP092020, School of Economics, University of Queensland, Australia.
    13. Kharratzadeh, Milad & Coates, Mark, 2017. "Semi-parametric order-based generalized multivariate regression," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 89-102.
    14. Alex Coad & Stjepan Srhoj, 2020. "Catching Gazelles with a Lasso: Big data techniques for the prediction of high-growth firms," Small Business Economics, Springer, vol. 55(3), pages 541-565, October.
    15. van Erp, Sara & Oberski, Daniel L. & Mulder, Joris, 2018. "Shrinkage priors for Bayesian penalized regression," OSF Preprints cg8fq, Center for Open Science.
    16. Tiffany Elsten & Mark Rooij, 2022. "SUBiNN: a stacked uni- and bivariate kNN sparse ensemble," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(4), pages 847-874, December.
    17. Brian Chi-ang Lin & Siqi Zheng & Felix Pretis & Lea Schneider & Jason E. Smerdon & David F. Hendry, 2016. "Detecting Volcanic Eruptions In Temperature Reconstructions By Designed Break-Indicator Saturation," Journal of Economic Surveys, Wiley Blackwell, vol. 30(3), pages 403-429, July.
    18. Koo, Bonsoo & Anderson, Heather M. & Seo, Myung Hwan & Yao, Wenying, 2020. "High-dimensional predictive regression in the presence of cointegration," Journal of Econometrics, Elsevier, vol. 219(2), pages 456-477.
    19. Rosember Guerra-Urzola & Katrijn Van Deun & Juan C. Vera & Klaas Sijtsma, 2021. "A Guide for Sparse PCA: Model Comparison and Applications," Psychometrika, Springer;The Psychometric Society, vol. 86(4), pages 893-919, December.
    20. Julien Chevallier & Dominique Guégan & Stéphane Goutte, 2021. "Is It Possible to Forecast the Price of Bitcoin?," Forecasting, MDPI, vol. 3(2), pages 1-44, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:7120691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.