IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v32y2017i3d10.1007_s00180-017-0730-6.html
   My bibliography  Save this article

A sparse hierarchical Bayesian model for detecting relevant antigenic sites in virus evolution

Author

Listed:
  • Vinny Davies

    (University of Glasgow)

  • Richard Reeve

    (University of Glasgow
    University of Glasgow)

  • William T. Harvey

    (University of Glasgow
    University of Glasgow)

  • Francois F. Maree

    (Onderstepoort Veterinary Institute)

  • Dirk Husmeier

    (University of Glasgow)

Abstract

Understanding how viruses offer protection against closely related emerging strains is vital for creating effective vaccines. For many viruses, multiple serotypes often co-circulate and testing large numbers of vaccines can be infeasible. Therefore the development of an in silico predictor of cross-protection between strains is important to help optimise vaccine choice. Here we present a sparse hierarchical Bayesian model for detecting relevant antigenic sites in virus evolution (SABRE) which can account for the experimental variability in the data and predict antigenic variability. The method uses spike and slab priors to identify sites in the viral protein which are important for the neutralisation of the virus. Using the SABRE method we are able to identify a number of key antigenic sites within several viruses, as well as providing estimates of significant changes in the evolutionary history of the serotypes. We show how our method outperforms alternative established methods; standard mixed effects models, the mixed effects LASSO, and the mixed effects elastic nets. We also propose novel proposal mechanisms for the Markov chain Monte Carlo simulations, which improve mixing and convergence over that of the established component-wise Gibbs sampler.

Suggested Citation

  • Vinny Davies & Richard Reeve & William T. Harvey & Francois F. Maree & Dirk Husmeier, 2017. "A sparse hierarchical Bayesian model for detecting relevant antigenic sites in virus evolution," Computational Statistics, Springer, vol. 32(3), pages 803-843, September.
  • Handle: RePEc:spr:compst:v:32:y:2017:i:3:d:10.1007_s00180-017-0730-6
    DOI: 10.1007/s00180-017-0730-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-017-0730-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-017-0730-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joeri Ruyssinck & Vân Anh Huynh-Thu & Pierre Geurts & Tom Dhaene & Piet Demeester & Yvan Saeys, 2014. "NIMEFI: Gene Regulatory Network Inference using Multiple Ensemble Feature Importance Algorithms," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-13, March.
    2. Jonathan Heydari & Conor Lawless & David A. Lydall & Darren J. Wilkinson, 2016. "Bayesian hierarchical modelling for inferring genetic interactions in yeast," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(3), pages 367-393, April.
    3. Richard Reeve & Belinda Blignaut & Jan J Esterhuysen & Pamela Opperman & Louise Matthews & Elizabeth E Fry & Tjaart A P de Beer & Jacques Theron & Elizabeth Rieder & Wilna Vosloo & Hester G O'Neill & , 2010. "Sequence-Based Prediction for Vaccine Strain Selection and Identification of Antigenic Variability in Foot-and-Mouth Disease Virus," PLOS Computational Biology, Public Library of Science, vol. 6(12), pages 1-13, December.
    4. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    5. B. D. Ripley, 1979. "Simulating Spatial Patterns: Dependent Samples from a Multivariate Density," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 28(1), pages 109-112, March.
    6. Robert Tibshirani, 2011. "Regression shrinkage and selection via the lasso: a retrospective," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(3), pages 273-282, June.
    7. Gelman A., 2004. "Parameterization and Bayesian Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 537-545, January.
    8. Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
    9. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    10. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tanin Sirimongkolkasem & Reza Drikvandi, 2019. "On Regularisation Methods for Analysis of High Dimensional Data," Annals of Data Science, Springer, vol. 6(4), pages 737-763, December.
    2. van Erp, Sara & Oberski, Daniel L. & Mulder, Joris, 2018. "Shrinkage priors for Bayesian penalized regression," OSF Preprints cg8fq, Center for Open Science.
    3. Faisal Maqbool Zahid & Shahla Faisal & Christian Heumann, 2020. "Variable selection techniques after multiple imputation in high-dimensional data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(3), pages 553-580, September.
    4. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    5. Szefer Elena & Lu Donghuan & Nathoo Farouk & Beg Mirza Faisal & Graham Jinko, 2017. "Multivariate association between single-nucleotide polymorphisms in Alzgene linkage regions and structural changes in the brain: discovery, refinement and validation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(5-6), pages 367-386, December.
    6. Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Post-Print halshs-00917797, HAL.
    7. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Risks, MDPI, vol. 6(2), pages 1-20, April.
    8. Philip D. Waggoner & Alec Macmillen, 2022. "Pursuing open-source development of predictive algorithms: the case of criminal sentencing algorithms," Journal of Computational Social Science, Springer, vol. 5(1), pages 89-109, May.
    9. Feihan Lu & Yao Zheng & Harrington Cleveland & Chris Burton & David Madigan, 2018. "Bayesian hierarchical vector autoregressive models for patient-level predictive modeling," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-27, December.
    10. Gilles Celeux & Mohammed El Anbari & Jean-Michel Marin & Christian P. Robert, 2010. "Regularization in Regression : Comparing Bayesian and Frequentist Methods in a Poorly Informative Situation," Working Papers 2010-43, Center for Research in Economics and Statistics.
    11. Shutes, Karl & Adcock, Chris, 2013. "Regularized Extended Skew-Normal Regression," MPRA Paper 58445, University Library of Munich, Germany, revised 09 Sep 2014.
    12. Korobilis, Dimitris, 2013. "Hierarchical shrinkage priors for dynamic regressions with many predictors," International Journal of Forecasting, Elsevier, vol. 29(1), pages 43-59.
    13. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    14. Yu-Zhu Tian & Man-Lai Tang & Wai-Sum Chan & Mao-Zai Tian, 2021. "Bayesian bridge-randomized penalized quantile regression for ordinal longitudinal data, with application to firm’s bond ratings," Computational Statistics, Springer, vol. 36(2), pages 1289-1319, June.
    15. Xing, Li-Min & Zhang, Yue-Jun, 2022. "Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?," Energy Economics, Elsevier, vol. 110(C).
    16. Billio, Monica & Casarin, Roberto & Rossini, Luca, 2019. "Bayesian nonparametric sparse VAR models," Journal of Econometrics, Elsevier, vol. 212(1), pages 97-115.
    17. Manisha Sanjay Sirsat & Paula Rodrigues Oblessuc & Ricardo S. Ramiro, 2022. "Genomic Prediction of Wheat Grain Yield Using Machine Learning," Agriculture, MDPI, vol. 12(9), pages 1-12, September.
    18. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    19. Wei Tang & Steven L Bressler & Chad M Sylvester & Gordon L Shulman & Maurizio Corbetta, 2012. "Measuring Granger Causality between Cortical Regions from Voxelwise fMRI BOLD Signals with LASSO," PLOS Computational Biology, Public Library of Science, vol. 8(5), pages 1-14, May.
    20. Yagli, Gokhan Mert & Yang, Dazhi & Srinivasan, Dipti, 2019. "Automatic hourly solar forecasting using machine learning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 487-498.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:32:y:2017:i:3:d:10.1007_s00180-017-0730-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.