IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v176y2023ics0960077923010627.html
   My bibliography  Save this article

Global stability and Turing instability deduced by cross-diffusion in a delayed diffusive cooperative species model

Author

Listed:
  • Tang, Xiaosong
  • Zhang, Xiaoyu
  • Liu, Yiting
  • Li, Wankun
  • Zhong, Qi

Abstract

In this paper, we investigate the dynamical behavior of a delayed diffusive cooperative species model with cross-diffusion. Firstly, in the case of self-diffusion, we study the persistence properties and global stability of positive equilibrium for this model by constructing Lyapunov function. The obtained results reveal that the delay has no effect on the stability of positive equilibrium for this model. However, cross-diffusion can affect the stability of positive equilibrium of this model. Then, we continue to discuss Turing bifurcation on one-dimensional space and Turing pattern on two-dimensional space, which are deduced by cross-diffusion. For Turing bifurcation, choosing some cross-diffusion rate as bifurcation parameter, this model undergoes Turing bifurcation nearby the positive equilibrium as cross-diffusion rate is across the Turing bifurcation curve, and bifurcates the stable spatially inhomogeneous steady state solutions. For Turing pattern, we find out the Turing region under some conditions successfully. Selecting the different values of two cross-diffusion rates in the Turing region respectively, we carry out some numerical simulations and obtain spots pattern, spots-strip pattern and strip pattern.

Suggested Citation

  • Tang, Xiaosong & Zhang, Xiaoyu & Liu, Yiting & Li, Wankun & Zhong, Qi, 2023. "Global stability and Turing instability deduced by cross-diffusion in a delayed diffusive cooperative species model," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
  • Handle: RePEc:eee:chsofr:v:176:y:2023:i:c:s0960077923010627
    DOI: 10.1016/j.chaos.2023.114160
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923010627
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114160?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng, Yahong & Zhang, Tonghua, 2016. "Turing instability and pattern induced by cross-diffusion in a predator-prey system with Allee effect," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 1-12.
    2. Wang, Henan & Liu, Ping, 2023. "Pattern dynamics of a predator–prey system with cross-diffusion, Allee effect and generalized Holling IV functional response," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    3. Li, Qiang & Liu, Zhijun & Yuan, Sanling, 2019. "Cross-diffusion induced Turing instability for a competition model with saturation effect," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 64-77.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Gaihui & Qin, Qijing & Cao, Hui & Jia, Yunfeng & Pang, Danfeng, 2024. "Pattern formation of a spatial vegetation system with cross-diffusion and nonlocal delay," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    2. Wang, Fatao & Yang, Ruizhi & Zhang, Xin, 2024. "Turing patterns in a predator–prey model with double Allee effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 170-191.
    3. Hua Liu & Yong Ye & Yumei Wei & Weiyuan Ma & Ming Ma & Kai Zhang, 2019. "Pattern Formation in a Reaction-Diffusion Predator-Prey Model with Weak Allee Effect and Delay," Complexity, Hindawi, vol. 2019, pages 1-14, November.
    4. Souna, Fethi & Belabbas, Mustapha & Menacer, Youssaf, 2023. "Complex pattern formations induced by the presence of cross-diffusion in a generalized predator–prey model incorporating the Holling type functional response and generalization of habitat complexity e," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 597-618.
    5. Peng, Yahong & Ling, Heyang, 2018. "Pattern formation in a ratio-dependent predator-prey model with cross-diffusion," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 307-318.
    6. Wang, Fatao & Yang, Ruizhi, 2023. "Spatial pattern formation driven by the cross-diffusion in a predator–prey model with Holling type functional response," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    7. Chen, Mengxin & Wu, Ranchao, 2023. "Steady states and spatiotemporal evolution of a diffusive predator–prey model," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    8. Mandal, Sayan & Sk, Nazmul & Tiwari, Pankaj Kumar & Chattopadhyay, Joydev, 2024. "Bistability in modified Holling II response model with harvesting and Allee effect: Exploring transitions in a noisy environment," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    9. Saifuddin, Md. & Biswas, Santanu & Samanta, Sudip & Sarkar, Susmita & Chattopadhyay, Joydev, 2016. "Complex dynamics of an eco-epidemiological model with different competition coefficients and weak Allee in the predator," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 270-285.
    10. Zhang, Hong-Tao & Wu, Yong-Ping & Sun, Gui-Quan & Liu, Chen & Feng, Guo-Lin, 2022. "Bifurcation analysis of a spatial vegetation model," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    11. Wang, Henan & Liu, Ping, 2023. "Pattern dynamics of a predator–prey system with cross-diffusion, Allee effect and generalized Holling IV functional response," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    12. Li, Qiang & Liu, Zhijun & Yuan, Sanling, 2019. "Cross-diffusion induced Turing instability for a competition model with saturation effect," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 64-77.
    13. Liu, Yanwei & Zhang, Tonghua & Liu, Xia, 2020. "Investigating the interactions between Allee effect and harvesting behaviour of a single species model: An evolutionary dynamics approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    14. Wenxu Ning & Zhijun Liu & Lianwen Wang & Ronghua Tan, 2021. "Analysis of a Stochastic Competitive Model with Saturation Effect and Distributed Delay," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1435-1459, December.
    15. Zhang, Feifan & Sun, Jiamin & Tian, Wang, 2022. "Spatiotemporal pattern selection in a nontoxic-phytoplankton - toxic-phytoplankton - zooplankton model with toxin avoidance effects," Applied Mathematics and Computation, Elsevier, vol. 423(C).
    16. Yan, Shuixian & Jia, Dongxue & Zhang, Tonghua & Yuan, Sanling, 2020. "Pattern dynamics in a diffusive predator-prey model with hunting cooperations," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    17. Han, Bingtao & Jiang, Daqing, 2022. "Stationary distribution, extinction and density function of a stochastic prey-predator system with general anti-predator behavior and fear effect," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    18. Zhu, Linhe & Tang, Yuxuan & Shen, Shuling, 2023. "Pattern study and parameter identification of a reaction-diffusion rumor propagation system with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:176:y:2023:i:c:s0960077923010627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.