IDEAS home Printed from https://ideas.repec.org/a/hin/complx/9154682.html
   My bibliography  Save this article

Fault Diagnosis of Electromechanical Actuator Based on VMD Multifractal Detrended Fluctuation Analysis and PNN

Author

Listed:
  • Hongmei Liu
  • Jiayao Jing
  • Jian Ma

Abstract

Electromechanical actuators (EMAs) are more and more widely used as actuation devices in flight control system of aircrafts and helicopters. The reliability of EMAs is vital because it will cause serious accidents if the malfunction of EMAs occurs, so it is significant to detect and diagnose the fault of EMAs timely. However, EMAs often run under variable conditions in realistic environment, and the vibration signals of EMAs are nonlinear and nonstationary, which make it difficult to effectively achieve fault diagnosis. This paper proposed a fault diagnosis method of electromechanical actuators based on variational mode decomposition (VMD) multifractal detrended fluctuation analysis (MFDFA) and probabilistic neural network (PNN). First, the vibration signals were decomposed by VMD into a number of intrinsic mode functions (IMFs). Second, the multifractal features hidden in IMFs were extracted by using MFDFA, and the generalized Hurst exponents were selected as the feature vectors. Then, the principal component analysis (PCA) was introduced to realize dimension reduction of the extracted feature vectors. Finally, the probabilistic neural network (PNN) was utilized to classify the fault modes. The experimental results show that this method can effectively achieve the fault diagnosis of EMAs even under diffident working conditions. Simultaneously, the diagnosis performance of the proposed method in this paper has an advantage over that of EMD-MFDFA method for feature extraction.

Suggested Citation

  • Hongmei Liu & Jiayao Jing & Jian Ma, 2018. "Fault Diagnosis of Electromechanical Actuator Based on VMD Multifractal Detrended Fluctuation Analysis and PNN," Complexity, Hindawi, vol. 2018, pages 1-11, August.
  • Handle: RePEc:hin:complx:9154682
    DOI: 10.1155/2018/9154682
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/9154682.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/9154682.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/9154682?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xihui Chen & Liping Peng & Gang Cheng & Chengming Luo, 2019. "Research on Degradation State Recognition of Planetary Gear Based on Multiscale Information Dimension of SSD and CNN," Complexity, Hindawi, vol. 2019, pages 1-12, March.
    2. Wenlong Fu & Jiawen Tan & Xiaoyuan Zhang & Tie Chen & Kai Wang, 2019. "Blind Parameter Identification of MAR Model and Mutation Hybrid GWO-SCA Optimized SVM for Fault Diagnosis of Rotating Machinery," Complexity, Hindawi, vol. 2019, pages 1-17, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:9154682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.