IDEAS home Printed from https://ideas.repec.org/a/hin/complx/1820257.html
   My bibliography  Save this article

Opinion Dynamics of Social-Similarity-Based Hegselmann–Krause Model

Author

Listed:
  • Xi Chen
  • Xiao Zhang
  • Yong Xie
  • Wei Li

Abstract

The existing opinion dynamics models mainly concentrate on the impact of opinions on other opinions and ignore the effect of the social similarity between individuals. Social similarity between an individual and their neighbors will also affect their opinions in real life. Therefore, an opinion evolution model considering social similarity (social-similarity-based HK model, SSHK model for short) is introduced in this paper. Social similarity is calculated using individual properties and is used to measure the social relationship between individuals. By considering the joint effect of confidence bounds and social similarity in this model, the role of neighbors’ selection is changed significantly in the process of the evolution of opinions. Numerical results demonstrate that the new model can not only obtain the salient features of the opinion result, namely, fragmentation, polarization, and consensus, but also achieve consensus more easily under the appropriate similarity threshold. In addition, the improved model with heterogeneous and homogeneous confidence bounds and similarity thresholds are also discussed. We found that the improved heterogeneous SSHK model could acquire opinion consensus results more easily than the homogeneous SSHK model and the classical models when the confidence bound was related to the similarity threshold. This finding provides a new way of thinking and a theoretical basis for the guidance of public opinion in real life.

Suggested Citation

  • Xi Chen & Xiao Zhang & Yong Xie & Wei Li, 2017. "Opinion Dynamics of Social-Similarity-Based Hegselmann–Krause Model," Complexity, Hindawi, vol. 2017, pages 1-12, December.
  • Handle: RePEc:hin:complx:1820257
    DOI: 10.1155/2017/1820257
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2017/1820257.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2017/1820257.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/1820257?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lux, Thomas, 2009. "Rational forecasts or social opinion dynamics? Identification of interaction effects in a business climate survey," Journal of Economic Behavior & Organization, Elsevier, vol. 72(2), pages 638-655, November.
    2. Jalili, Mahdi, 2013. "Social power and opinion formation in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 959-966.
    3. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    4. Liang, Haili & Yang, Yiping & Wang, Xiaofan, 2013. "Opinion dynamics in networks with heterogeneous confidence and influence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2248-2256.
    5. Wang, Huanjing & Shang, Lihui, 2015. "Opinion dynamics in networks with common-neighbors-based connections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 180-186.
    6. Pineda, M. & Buendía, G.M., 2015. "Mass media and heterogeneous bounds of confidence in continuous opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 73-84.
    7. Fu, Guiyuan & Zhang, Weidong & Li, Zhijun, 2015. "Opinion dynamics of modified Hegselmann–Krause model in a group-based population with heterogeneous bounded confidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 558-565.
    8. Lorenz, Jan, 2005. "A stabilization theorem for dynamics of continuous opinions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 217-223.
    9. Thomas Lux, 2009. "Rational Forecasts or Social Opinion Dynamics? Identification of Interaction Effects in a Business Climate Survey," Post-Print hal-00720175, HAL.
    10. Santo Fortunato, 2005. "On The Consensus Threshold For The Opinion Dynamics Of Krause–Hegselmann," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 16(02), pages 259-270.
    11. Chen, Shuwei & Glass, David H. & McCartney, Mark, 2016. "Characteristics of successful opinion leaders in a bounded confidence model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 426-436.
    12. Andreas Flache & Michael Mäs & Thomas Feliciani & Edmund Chattoe-Brown & Guillaume Deffuant & Sylvie Huet & Jan Lorenz, 2017. "Models of Social Influence: Towards the Next Frontiers," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(4), pages 1-2.
    13. Jin Li & Renbin Xiao, 2017. "Agent-Based Modelling Approach for Multidimensional Opinion Polarization in Collective Behaviour," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(2), pages 1-4.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kozitsin, Ivan V., 2024. "Optimal control in opinion dynamics models: diversity of influence mechanisms and complex influence hierarchies," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    2. Huang, Changwei & Hou, Yongzhao & Han, Wenchen, 2023. "Coevolution of consensus and cooperation in evolutionary Hegselmann–Krause dilemma with the cooperation cost," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    3. Xi Chen & Shen Zhao & Wei Li, 2019. "Opinion Dynamics Model Based on Cognitive Styles: Field-Dependence and Field-Independence," Complexity, Hindawi, vol. 2019, pages 1-12, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Jian & Li, Wenshan & Jiang, Mingyue, 2021. "Opinion dynamics in modified expressed and private model with bounded confidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    2. Takesue, Hirofumi, 2023. "Relative opinion similarity leads to the emergence of large clusters in opinion formation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    3. Evangelos Ioannidis & Nikos Varsakelis & Ioannis Antoniou, 2020. "Promoters versus Adversaries of Change: Agent-Based Modeling of Organizational Conflict in Co-Evolving Networks," Mathematics, MDPI, vol. 8(12), pages 1-25, December.
    4. Huang, Changwei & Bian, Huanyu & Han, Wenchen, 2024. "Breaking the symmetry neutralizes the extremization under the repulsion and higher order interactions," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    5. Marco D'Errico & Gulnur Muradoglu & Silvana Stefani & Giovanni Zambruno, 2014. "Opinion Dynamics and Price Formation: a Nonlinear Network Model," Papers 1408.0308, arXiv.org.
    6. Catherine A. Glass & David H. Glass, 2021. "Social Influence of Competing Groups and Leaders in Opinion Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 799-823, October.
    7. Han, Wenchen & Feng, Yuee & Qian, Xiaolan & Yang, Qihui & Huang, Changwei, 2020. "Clusters and the entropy in opinion dynamics on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    8. Xi Chen & Shen Zhao & Wei Li, 2019. "Opinion Dynamics Model Based on Cognitive Styles: Field-Dependence and Field-Independence," Complexity, Hindawi, vol. 2019, pages 1-12, February.
    9. Glass, Catherine A. & Glass, David H., 2021. "Opinion dynamics of social learning with a conflicting source," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    10. Chen, Shuwei & Glass, David H. & McCartney, Mark, 2016. "Characteristics of successful opinion leaders in a bounded confidence model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 426-436.
    11. Huang, Changwei & Hou, Yongzhao & Han, Wenchen, 2023. "Coevolution of consensus and cooperation in evolutionary Hegselmann–Krause dilemma with the cooperation cost," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    12. Michel Grabisch & Agnieszka Rusinowska, 2020. "A Survey on Nonstrategic Models of Opinion Dynamics," Games, MDPI, vol. 11(4), pages 1-29, December.
    13. Luo, Yun & Li, Yuke & Sun, Chudi & Cheng, Chun, 2022. "Adapted Deffuant–Weisbuch model with implicit and explicit opinions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    14. Khalil, Nagi, 2021. "Approach to consensus in models of continuous-opinion dynamics: A study inspired by the physics of granular gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    15. Fu, Guiyuan & Zhang, Weidong & Li, Zhijun, 2015. "Opinion dynamics of modified Hegselmann–Krause model in a group-based population with heterogeneous bounded confidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 558-565.
    16. Xi Chen & Zhan Wu & Hongwei Wang & Wei Li, 2017. "Impact of Heterogeneity on Opinion Dynamics: Heterogeneous Interaction Model," Complexity, Hindawi, vol. 2017, pages 1-10, April.
    17. Reitz, Stefan & Rülke, Jan-Christoph & Stadtmann, Georg, 2012. "Nonlinear expectations in speculative markets – Evidence from the ECB survey of professional forecasters," Journal of Economic Dynamics and Control, Elsevier, vol. 36(9), pages 1349-1363.
    18. Kubin, Ingrid & Zörner, Thomas O. & Gardini, Laura & Commendatore, Pasquale, 2019. "A credit cycle model with market sentiments," Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 159-174.
    19. Buechel, Berno & Hellmann, Tim & Klößner, Stefan, 2015. "Opinion dynamics and wisdom under conformity," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 240-257.
    20. Jørgen Vitting Andersen & Ioannis Vrontos & Petros Dellaportas & Serge Galam, 2014. "Communication impacting financial markets," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00982959, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:1820257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.