IDEAS home Printed from https://ideas.repec.org/a/hin/complx/1817248.html
   My bibliography  Save this article

Thermodynamic Entropy in Quantum Statistics for Stock Market Networks

Author

Listed:
  • Jianjia Wang
  • Chenyue Lin
  • Yilei Wang

Abstract

The stock market is a dynamical system composed of intricate relationships between financial entities, such as banks, corporations, and institutions. Such a complex interactive system can be represented by the network structure. The underlying mechanism of stock exchange establishes a time-evolving network among companies and individuals, which characterise the correlations of stock prices in the time sequential trades. Here, we develop a novel technique in quantum statistics to analyse the financial market evolution. We commence from heat bath analogy where the normalised Laplacian matrix plays the role of the Hamiltonian operator of the network. The eigenvalues of the Hamiltonian specify energy states of the network. These states are occupied by either indistinguishable bosons or fermions with corresponding Bose-Einstein and Fermi-Dirac statistics. Using the relevant partition functions, we develop the thermodynamic entropy to explore dynamic network characterisations. We conduct the experiments to apply this novel method to identify the significant variance in network structure during the financial crisis. The thermodynamic entropy provides an excellent framework to represent the variations taking place in the stock market.

Suggested Citation

  • Jianjia Wang & Chenyue Lin & Yilei Wang, 2019. "Thermodynamic Entropy in Quantum Statistics for Stock Market Networks," Complexity, Hindawi, vol. 2019, pages 1-11, April.
  • Handle: RePEc:hin:complx:1817248
    DOI: 10.1155/2019/1817248
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/1817248.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/1817248.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/1817248?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dror Kenett & Shlomo Havlin, 2015. "Network science: a useful tool in economics and finance," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 14(2), pages 155-167, November.
    2. Juan Eberhard & Jaime F. Lavin & Alejandro Montecinos-Pearce, 2017. "A Network-Based Dynamic Analysis in an Equity Stock Market," Complexity, Hindawi, vol. 2017, pages 1-16, November.
    3. Elton, Edwin J & Gruber, Martin J, 1977. "Risk Reduction and Portfolio Size: An Analytical Solution," The Journal of Business, University of Chicago Press, vol. 50(4), pages 415-437, October.
    4. Liang He & Shouwei Li, 2017. "Network Entropy and Systemic Risk in Dynamic Banking Systems," Complexity, Hindawi, vol. 2017, pages 1-7, November.
    5. Andrew Sheng, 2010. "Financial Crisis and Global Governance," World Bank Publications - Books, The World Bank Group, number 27785.
    6. Passerini, Filippo & Severini, Simone, 2008. "The von Neumann entropy of networks," MPRA Paper 12538, University Library of Munich, Germany.
    7. Korkut A. Erturk, 2001. "Overcapacity and the East Asian Crisis," Journal of Post Keynesian Economics, Taylor & Francis Journals, vol. 24(2), pages 253-275, December.
    8. Steven Radelet & Jeffrey D. Sachs, 1998. "The East Asian Financial Crisis: Diagnosis, Remedies, Prospects," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 29(1), pages 1-90.
    9. Ya-Chun Gao & Zong-Wen Wei & Bing-Hong Wang, 2013. "Dynamic Evolution Of Financial Network And Its Relation To Economic Crises," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 24(02), pages 1-10.
    10. G. Bonanno & G. Caldarelli & F. Lillo & S. Micciché & N. Vandewalle & R. Mantegna, 2004. "Networks of equities in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 38(2), pages 363-371, March.
    11. Tiziano Squartini & Andrea Gabrielli & Diego Garlaschelli & Tommaso Gili & Angelo Bifone & Fabio Caccioli, 2018. "Complexity in Neural and Financial Systems: From Time-Series to Networks," Complexity, Hindawi, vol. 2018, pages 1-2, April.
    12. Dong-Ming Song & Michele Tumminello & Wei-Xing Zhou & Rosario N. Mantegna, 2011. "Evolution of worldwide stock markets, correlation structure and correlation based graphs," Papers 1103.5555, arXiv.org.
    13. Ioannis Anagnostou & Sumit Sourabh & Drona Kandhai, 2018. "Incorporating Contagion in Portfolio Credit Risk Models Using Network Theory," Complexity, Hindawi, vol. 2018, pages 1-15, January.
    14. Ben Bemanke & Harold James, 1991. "The Gold Standard, Deflation, and Financial Crisis in the Great Depression: An International Comparison," NBER Chapters, in: Financial Markets and Financial Crises, pages 33-68, National Bureau of Economic Research, Inc.
    15. Filipi N. Silva & Cesar H. Comin & Thomas K. DM. Peron & Francisco A. Rodrigues & Cheng Ye & Richard C. Wilson & Edwin Hancock & Luciano da F. Costa, 2015. "Modular Dynamics of Financial Market Networks," Papers 1501.05040, arXiv.org, revised Jul 2015.
    16. Griliches, Zvi, 1977. "Estimating the Returns to Schooling: Some Econometric Problems," Econometrica, Econometric Society, vol. 45(1), pages 1-22, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    2. Teh, Boon Kin & Goo, Yik Wen & Lian, Tong Wei & Ong, Wei Guang & Choi, Wen Ting & Damodaran, Mridula & Cheong, Siew Ann, 2015. "The Chinese Correction of February 2007: How financial hierarchies change in a market crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 225-241.
    3. Shekhtman, Louis M. & Danziger, Michael M. & Havlin, Shlomo, 2016. "Recent advances on failure and recovery in networks of networks," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 28-36.
    4. Kiran Sharma & Parul Khurana, 2021. "Growth and dynamics of Econophysics: a bibliometric and network analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4417-4436, May.
    5. Sensoy, Ahmet & Tabak, Benjamin M., 2014. "Dynamic spanning trees in stock market networks: The case of Asia-Pacific," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 387-402.
    6. Chun-Xiao Nie & Fu-Tie Song, 2021. "Entropy of Graphs in Financial Markets," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1149-1166, April.
    7. Wen, Danyan & Ma, Chaoqun & Wang, Gang-Jin & Wang, Senzhang, 2018. "Investigating the features of pairs trading strategy: A network perspective on the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 903-918.
    8. Hongxing Yao & Yanyu Lu & Bilal Ahmed Memon, 2019. "Impact of US-China Trade War on the Network Topology Structure of Chinese Stock Market," Journal of Asian Business Strategy, Asian Economic and Social Society, vol. 9(2), pages 235-250, December.
    9. Leonidas Sandoval Junior & Asher Mullokandov & Dror Y. Kenett, 2015. "Dependency Relations among International Stock Market Indices," JRFM, MDPI, vol. 8(2), pages 1-39, May.
    10. repec:fip:a00001:94154 is not listed on IDEAS
    11. Zhao, Longfeng & Wang, Gang-Jin & Wang, Mingang & Bao, Weiqi & Li, Wei & Stanley, H. Eugene, 2018. "Stock market as temporal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 1104-1112.
    12. Andrea Di Iura, 2022. "Comparison of empirical and shrinkage correlation algorithm for clustering methods in the futures market," SN Business & Economics, Springer, vol. 2(8), pages 1-17, August.
    13. Gang-Jin Wang & Chi Xie & Shou Chen, 2017. "Multiscale correlation networks analysis of the US stock market: a wavelet analysis," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(3), pages 561-594, October.
    14. Sandoval, Leonidas, 2014. "To lag or not to lag? How to compare indices of stock markets that operate on different times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 227-243.
    15. Yanhua Chen & Rosario N Mantegna & Athanasios A Pantelous & Konstantin M Zuev, 2018. "A dynamic analysis of S&P 500, FTSE 100 and EURO STOXX 50 indices under different exchange rates," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-40, March.
    16. Nie, Chun-Xiao, 2019. "Applying correlation dimension to the analysis of the evolution of network structure," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 294-303.
    17. Faggini, Marisa & Bruno, Bruna & Parziale, Anna, 2019. "Crises in economic complex networks: Black Swans or Dragon Kings?," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 105-115.
    18. Mai, Yong & Chen, Huan & Meng, Lei, 2014. "An analysis of the sectorial influence of CSI300 stocks within the directed network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 235-241.
    19. Sandoval, Leonidas, 2012. "Pruning a minimum spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2678-2711.
    20. Nicolás Magner & Jaime F. Lavín & Mauricio A. Valle, 2022. "Modeling Synchronization Risk among Sustainable Exchange Trade Funds: A Statistical and Network Analysis Approach," Mathematics, MDPI, vol. 10(19), pages 1-30, October.
    21. Haizhou Huang & Chenggang Xu, 1999. "Financial Institutions, Financial Contagion, and Financial Crises," CID Working Papers 21, Center for International Development at Harvard University.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:1817248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.