IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v8y2015i2p227-265d50467.html
   My bibliography  Save this article

Dependency Relations among International Stock Market Indices

Author

Listed:
  • Leonidas Sandoval Junior

    (Insper Instituto de Ensino e Pesquisa, Rua Quatá, 300, São Paulo, SP, 04546-042, Brazil)

  • Asher Mullokandov

    (Department of Physics, Boston Univeristy, 590 Commonwealth Ave, Boston, MA 02215, USA)

  • Dror Y. Kenett

    (Center for Polymer Studies and Department of Physics, 590 Commonwealth Avenue, Boston, MA 02215, USA)

Abstract

We develop networks of international stock market indices using information and correlation based measures. We use 83 stock market indices of a diversity of countries, as well as their single day lagged values, to probe the correlation and the flow of information from one stock index to another taking into account different operating hours. Additionally, we apply the formalism of partial correlations to build the dependency network of the data, and calculate the partial Transfer Entropy to quantify the indirect influence that indices have on one another. We find that Transfer Entropy is an effective way to quantify the flow of information between indices, and that a high degree of information flow between indices lagged by one day coincides to same day correlation between them.

Suggested Citation

  • Leonidas Sandoval Junior & Asher Mullokandov & Dror Y. Kenett, 2015. "Dependency Relations among International Stock Market Indices," JRFM, MDPI, vol. 8(2), pages 1-39, May.
  • Handle: RePEc:gam:jjrfmx:v:8:y:2015:i:2:p:227-265:d:50467
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/8/2/227/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/8/2/227/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dimpfl Thomas & Peter Franziska Julia, 2013. "Using transfer entropy to measure information flows between financial markets," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(1), pages 85-102, February.
    2. Y. Shapira & D. Y. Kenett & E. Ben-Jacob, 2009. "The Index cohesive effect on stock market correlations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 72(4), pages 657-669, December.
    3. Jinkyu Kim & Gunn Kim & Sungbae An & Young-Kyun Kwon & Sungroh Yoon, 2013. "Entropy-Based Analysis and Bioinformatics-Inspired Integration of Global Economic Information Transfer," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-10, January.
    4. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    5. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    6. Michael Wibral & Nicolae Pampu & Viola Priesemann & Felix Siebenhühner & Hannes Seiwert & Michael Lindner & Joseph T Lizier & Raul Vicente, 2013. "Measuring Information-Transfer Delays," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-19, February.
    7. Okyu Kwon & Jae-Suk Yang, 2008. "Information flow between stock indices," Papers 0802.1747, arXiv.org.
    8. Thomas J Flavin & Margaret J Hurley & Fabrice Rousseau, 2002. "Explaining Stock Market Correlation: A Gravity Model Approach," Manchester School, University of Manchester, vol. 70(S1), pages 87-106.
    9. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    10. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    11. Dror Y Kenett & Michele Tumminello & Asaf Madi & Gitit Gur-Gershgoren & Rosario N Mantegna & Eshel Ben-Jacob, 2010. "Dominating Clasp of the Financial Sector Revealed by Partial Correlation Analysis of the Stock Market," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-14, December.
    12. Sensoy, Ahmet & Sobaci, Cihat & Sensoy, Sadri & Alali, Fatih, 2014. "Effective transfer entropy approach to information flow between exchange rates and stock markets," Chaos, Solitons & Fractals, Elsevier, vol. 68(C), pages 180-185.
    13. repec:bla:manchs:v:70:y:2002:i:0:p:87-106 is not listed on IDEAS
    14. Kwon, Okyu & Yang, Jae-Suk, 2008. "Information flow between composite stock index and individual stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2851-2856.
    15. G. Bonanno & G. Caldarelli & F. Lillo & S. Micciché & N. Vandewalle & R. Mantegna, 2004. "Networks of equities in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 38(2), pages 363-371, March.
    16. Seung Ki Baek & Woo-Sung Jung & Okyu Kwon & Hie-Tae Moon, 2005. "Transfer Entropy Analysis of the Stock Market," Papers physics/0509014, arXiv.org, revised Sep 2005.
    17. Cochrane, John H, 1988. "How Big Is the Random Walk in GNP?," Journal of Political Economy, University of Chicago Press, vol. 96(5), pages 893-920, October.
    18. Dong-Ming Song & Michele Tumminello & Wei-Xing Zhou & Rosario N. Mantegna, 2011. "Evolution of worldwide stock markets, correlation structure and correlation based graphs," Papers 1103.5555, arXiv.org.
    19. Sandoval, Leonidas, 2014. "To lag or not to lag? How to compare indices of stock markets that operate on different times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 227-243.
    20. Dimpfl, Thomas & Peter, Franziska J., 2014. "The impact of the financial crisis on transatlantic information flows: An intraday analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 31(C), pages 1-13.
    21. Sandoval , Leonidas Junior, 2013. "Cluster formation and evolution in networks of financial market indices," Algorithmic Finance, IOS Press, vol. 2(1), pages 3-43.
    22. Yik Wen Goo & Tong Wei Lian & Wei Guang Ong & Wen Ting Choi & Siew-Ann Cheong, 2009. "Financial Atoms and Molecules," Papers 0903.2099, arXiv.org.
    23. Eom, Cheoljun & Oh, Gabjin & Jung, Woo-Sung & Jeong, Hawoong & Kim, Seunghwan, 2009. "Topological properties of stock networks based on minimal spanning tree and random matrix theory in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 900-906.
    24. Coelho, Ricardo & Gilmore, Claire G. & Lucey, Brian & Richmond, Peter & Hutzler, Stefan, 2007. "The evolution of interdependence in world equity markets—Evidence from minimum spanning trees," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 455-466.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sandoval, Leonidas, 2012. "Pruning a minimum spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2678-2711.
    2. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    3. Sandoval, Leonidas, 2014. "To lag or not to lag? How to compare indices of stock markets that operate on different times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 227-243.
    4. Xie, Wen-Jie & Yong, Yang & Wei, Na & Yue, Peng & Zhou, Wei-Xing, 2021. "Identifying states of global financial market based on information flow network motifs," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    5. Leonidas Sandoval Junior, 2014. "Dynamics in two networks based on stocks of the US stock market," Papers 1408.1728, arXiv.org, revised Aug 2014.
    6. Nicoló Andrea Caserini & Paolo Pagnottoni, 2022. "Effective transfer entropy to measure information flows in credit markets," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 729-757, October.
    7. Lim, Kyuseong & Kim, Sehyun & Kim, Soo Yong, 2017. "Information transfer across intra/inter-structure of CDS and stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 118-126.
    8. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Correlation of financial markets in times of crisis," Papers 1102.1339, arXiv.org, revised Mar 2011.
    9. Banerjee, Ameet Kumar & Akhtaruzzaman, Md & Dionisio, Andreia & Almeida, Dora & Sensoy, Ahmet, 2022. "Nonlinear nexus between cryptocurrency returns and COVID-19 news sentiment," Journal of Behavioral and Experimental Finance, Elsevier, vol. 36(C).
    10. Theo Diamandis & Yonathan Murin & Andrea Goldsmith, 2018. "Ranking Causal Influence of Financial Markets via Directed Information Graphs," Papers 1801.06896, arXiv.org.
    11. Peng Yue & Qing Cai & Wanfeng Yan & Wei-Xing Zhou, 2020. "Information flow networks of Chinese stock market sectors," Papers 2004.08759, arXiv.org.
    12. Irena Vodenska & Alexander P. Becker & Di Zhou & Dror Y. Kenett & H. Eugene Stanley & Shlomo Havlin, 2016. "Community Analysis of Global Financial Markets," Risks, MDPI, vol. 4(2), pages 1-15, May.
    13. Civitarese, Jamil, 2016. "Volatility and correlation-based systemic risk measures in the US market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 55-67.
    14. Výrost, Tomáš & Lyócsa, Štefan & Baumöhl, Eduard, 2015. "Granger causality stock market networks: Temporal proximity and preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 262-276.
    15. Nobi, Ashadun & Lee, Jae Woo, 2016. "State and group dynamics of world stock market by principal component analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 85-94.
    16. Tao You & Paweł Fiedor & Artur Hołda, 2015. "Network Analysis of the Shanghai Stock Exchange Based on Partial Mutual Information," JRFM, MDPI, vol. 8(2), pages 1-19, June.
    17. Nie, Chun-Xiao, 2023. "Time-varying characteristics of information flow networks in the Chinese market: An analysis based on sector indices," Finance Research Letters, Elsevier, vol. 54(C).
    18. Chun-Xiao Nie & Fu-Tie Song, 2021. "Entropy of Graphs in Financial Markets," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1149-1166, April.
    19. Leonidas Sandoval Junior, 2011. "A Map of the Brazilian Stock Market," Papers 1107.4146, arXiv.org, revised Mar 2013.
    20. Yonatan Berman & Eshel Ben-Jacob & Xin Zhang & Yoash Shapira, 2016. "Analyzing the Long Term Cohesive Effect of Sector Specific Driving Forces," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:8:y:2015:i:2:p:227-265:d:50467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.