IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v506y2018icp1104-1112.html
   My bibliography  Save this article

Stock market as temporal network

Author

Listed:
  • Zhao, Longfeng
  • Wang, Gang-Jin
  • Wang, Mingang
  • Bao, Weiqi
  • Li, Wei
  • Stanley, H. Eugene

Abstract

Financial networks have become extremely useful in characterizing the structures of complex financial systems. Meanwhile, the time evolution property of the stock markets can be described by temporal networks. We utilize the temporal network framework to characterize the time-evolving correlation-based networks of stock markets. The market instability can be detected by the evolution of the topology structure of the financial networks. We then employ the temporal centrality as a portfolio selection tool. Those portfolios, which are composed of peripheral stocks with low temporal centrality scores, have consistently better performance under different portfolio optimization frameworks, suggesting that the temporal centrality measure can be used as new portfolio optimization and risk management tool. Our results reveal the importance of the temporal attributes of the stock markets, which should be taken serious consideration in real life applications.

Suggested Citation

  • Zhao, Longfeng & Wang, Gang-Jin & Wang, Mingang & Bao, Weiqi & Li, Wei & Stanley, H. Eugene, 2018. "Stock market as temporal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 1104-1112.
  • Handle: RePEc:eee:phsmap:v:506:y:2018:i:c:p:1104-1112
    DOI: 10.1016/j.physa.2018.05.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118305752
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.05.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fabio Caccioli & Susanne Still & Matteo Marsili & Imre Kondor, 2013. "Optimal liquidation strategies regularize portfolio selection," The European Journal of Finance, Taylor & Francis Journals, vol. 19(6), pages 554-571, July.
    2. Shi-Min Cai & Yan-Bo Zhou & Tao Zhou & Pei-Ling Zhou, 2010. "Hierarchical Organization And Disassortative Mixing Of Correlation-Based Weighted Financial Networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 21(03), pages 433-441.
    3. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    4. Ya-Chun Gao & Yong Zeng & Shi-Min Cai, 2015. "Influence network in Chinese stock market," Papers 1503.00823, arXiv.org.
    5. Dror Kenett & Shlomo Havlin, 2015. "Network science: a useful tool in economics and finance," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 14(2), pages 155-167, November.
    6. Rudi Schafer & Nils Fredrik Nilsson & Thomas Guhr, 2010. "Power mapping with dynamical adjustment for improved portfolio optimization," Quantitative Finance, Taylor & Francis Journals, vol. 10(1), pages 107-119.
    7. Havlin, Shlomo & Stanley, H. Eugene & Bashan, Amir & Gao, Jianxi & Kenett, Dror Y., 2015. "Percolation of interdependent network of networks," Chaos, Solitons & Fractals, Elsevier, vol. 72(C), pages 4-19.
    8. Gang-Jin Wang & Chi Xie & Shou Chen, 2017. "Multiscale correlation networks analysis of the US stock market: a wavelet analysis," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(3), pages 561-594, October.
    9. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    10. Thomas Guhr & Bernd Kaelber, 2002. "A New Method to Estimate the Noise in Financial Correlation Matrices," Papers cond-mat/0206577, arXiv.org.
    11. Carlo Acerbi & Dirk Tasche, 2002. "Expected Shortfall: A Natural Coherent Alternative to Value at Risk," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 379-388, July.
    12. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    13. Tumminello, Michele & Lillo, Fabrizio & Mantegna, Rosario N., 2010. "Correlation, hierarchies, and networks in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 75(1), pages 40-58, July.
    14. Gang-Jin Wang & Chi Xie & Kaijian He & H. Eugene Stanley, 2017. "Extreme risk spillover network: application to financial institutions," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1417-1433, September.
    15. Jihui Han & Wei Li & Longfeng Zhao & Zhu Su & Yijiang Zou & Weibing Deng, 2017. "Community detection in dynamic networks via adaptive label propagation," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-16, November.
    16. Dror Y Kenett & Michele Tumminello & Asaf Madi & Gitit Gur-Gershgoren & Rosario N Mantegna & Eshel Ben-Jacob, 2010. "Dominating Clasp of the Financial Sector Revealed by Partial Correlation Analysis of the Stock Market," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-14, December.
    17. Longfeng Zhao & Wei Li & Andrea Fenu & Boris Podobnik & Yougui Wang & H. Eugene Stanley, 2017. "The q-dependent detrended cross-correlation analysis of stock market," Papers 1705.01406, arXiv.org, revised Jun 2017.
    18. Wang, Gang-Jin & Xie, Chi, 2015. "Correlation structure and dynamics of international real estate securities markets: A network perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 176-193.
    19. Dong-Ming Song & Michele Tumminello & Wei-Xing Zhou & Rosario N. Mantegna, 2011. "Evolution of worldwide stock markets, correlation structure and correlation based graphs," Papers 1103.5555, arXiv.org.
    20. Ashadun Nobi & Sungmin Lee & Doo Hwan Kim & Jae Woo Lee, 2014. "Correlation and Network Topologies in Global and Local Stock Indices," Papers 1402.1552, arXiv.org.
    21. Fabio Caccioli & Imre Kondor & Matteo Marsili & Susanne Still, 2016. "Liquidity Risk And Instabilities In Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-28, August.
    22. Tola, Vincenzo & Lillo, Fabrizio & Gallegati, Mauro & Mantegna, Rosario N., 2008. "Cluster analysis for portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 235-258, January.
    23. Jihui Han & Wei Li & Zhu Su & Longfeng Zhao & Weibing Deng, 2016. "Community detection by label propagation with compression of flow," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(12), pages 1-11, December.
    24. Peralta, Gustavo & Zareei, Abalfazl, 2016. "A network approach to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 157-180.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Longfeng Zhao & Chao Wang & Gang-Jin Wang & H. Eugene Stanley & Lin Chen, 2021. "Community detection and portfolio optimization," Papers 2112.13383, arXiv.org.
    2. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    3. Yong Tang & Jason Jie Xiong & Zi-Yang Jia & Yi-Cheng Zhang, 2018. "Complexities in Financial Network Topological Dynamics: Modeling of Emerging and Developed Stock Markets," Complexity, Hindawi, vol. 2018, pages 1-31, November.
    4. Chen, Yanhua & Li, Youwei & Pantelous, Athanasios A. & Stanley, H. Eugene, 2022. "Short-run disequilibrium adjustment and long-run equilibrium in the international stock markets: A network-based approach," International Review of Financial Analysis, Elsevier, vol. 79(C).
    5. Bhattacharjee, Biplab & Kumar, Rajiv & Senthilkumar, Arunachalam, 2022. "Unidirectional and bidirectional LSTM models for edge weight predictions in dynamic cross-market equity networks," International Review of Financial Analysis, Elsevier, vol. 84(C).
    6. Wen, Danyan & Ma, Chaoqun & Wang, Gang-Jin & Wang, Senzhang, 2018. "Investigating the features of pairs trading strategy: A network perspective on the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 903-918.
    7. Li, Yan & Jiang, Xiong-Fei & Tian, Yue & Li, Sai-Ping & Zheng, Bo, 2019. "Portfolio optimization based on network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 671-681.
    8. Esmalifalak, Hamidreza, 2022. "Euclidean (dis)similarity in financial network analysis," Global Finance Journal, Elsevier, vol. 53(C).
    9. Sensoy, Ahmet & Tabak, Benjamin M., 2014. "Dynamic spanning trees in stock market networks: The case of Asia-Pacific," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 387-402.
    10. Millington, Tristan & Niranjan, Mahesan, 2021. "Construction of minimum spanning trees from financial returns using rank correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    11. Gang-Jin Wang & Chi Xie & H. Eugene Stanley, 2018. "Correlation Structure and Evolution of World Stock Markets: Evidence from Pearson and Partial Correlation-Based Networks," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 607-635, March.
    12. Nie, Chun-Xiao & Song, Fu-Tie, 2019. "Global Rényi index of the distance matrix," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 902-915.
    13. Wang, Gang-Jin & Xie, Chi, 2015. "Correlation structure and dynamics of international real estate securities markets: A network perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 176-193.
    14. Sandoval, Leonidas, 2014. "To lag or not to lag? How to compare indices of stock markets that operate on different times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 227-243.
    15. Yanhua Chen & Rosario N Mantegna & Athanasios A Pantelous & Konstantin M Zuev, 2018. "A dynamic analysis of S&P 500, FTSE 100 and EURO STOXX 50 indices under different exchange rates," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-40, March.
    16. Chen, Wei & Hou, Xiaoli & Jiang, Manrui & Jiang, Cheng, 2022. "Identifying systemically important financial institutions in complex network: A case study of Chinese stock market," Emerging Markets Review, Elsevier, vol. 50(C).
    17. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa B. & Stosic, Tatijana, 2018. "Collective behavior of cryptocurrency price changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 499-509.
    18. Civitarese, Jamil, 2016. "Volatility and correlation-based systemic risk measures in the US market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 55-67.
    19. Výrost, Tomas & Lyócsa, Štefan & Baumöhl, Eduard, 2019. "Network-based asset allocation strategies," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 516-536.
    20. Zhang, Xin & Podobnik, Boris & Kenett, Dror Y. & Eugene Stanley, H., 2014. "Systemic risk and causality dynamics of the world international shipping market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 43-53.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:506:y:2018:i:c:p:1104-1112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.