IDEAS home Printed from https://ideas.repec.org/a/hin/complx/1403829.html
   My bibliography  Save this article

Improved Permutation Entropy for Measuring Complexity of Time Series under Noisy Condition

Author

Listed:
  • Zhe Chen
  • Yaan Li
  • Hongtao Liang
  • Jing Yu

Abstract

Measuring complexity of observed time series plays an important role for understanding the characteristics of the system under study. Permutation entropy (PE) is a powerful tool for complexity analysis, but it has some limitations. For example, the amplitude information is discarded; the equalities (i.e., equal values in the analysed signal) are not properly dealt with; and the performance under noisy condition remains to be improved. In this paper, the improved permutation entropy (IPE) is proposed. The presented method combines some advantages of previous modifications of PE. Its effectiveness is validated through both synthetic and experimental analyses. Compared with PE, IPE is capable of detecting spiky features and correctly differentiating heart rate variability (HRV) signals. Moreover, it performs better under noisy condition. Ship classification experiment results demonstrate that IPE achieves 28.66% higher recognition rate than PE at 0dB. Hence, IPE could be used as an alternative of PE for analysing time series under noisy condition.

Suggested Citation

  • Zhe Chen & Yaan Li & Hongtao Liang & Jing Yu, 2019. "Improved Permutation Entropy for Measuring Complexity of Time Series under Noisy Condition," Complexity, Hindawi, vol. 2019, pages 1-12, March.
  • Handle: RePEc:hin:complx:1403829
    DOI: 10.1155/2019/1403829
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/1403829.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/1403829.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/1403829?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. He, Shaobo & Sun, Kehui & Wang, Huihai, 2016. "Multivariate permutation entropy and its application for complexity analysis of chaotic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 812-823.
    2. Luca Faes & Alberto Porta & Michal Javorka & Giandomenico Nollo, 2017. "Efficient Computation of Multiscale Entropy over Short Biomedical Time Series Based on Linear State-Space Models," Complexity, Hindawi, vol. 2017, pages 1-13, December.
    3. Xinzhong Zhu & Huiying Xu & Jianmin Zhao & Jie Tian, 2017. "Automated Epileptic Seizure Detection in Scalp EEG Based on Spatial-Temporal Complexity," Complexity, Hindawi, vol. 2017, pages 1-8, December.
    4. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2009. "Forbidden patterns, permutation entropy and stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2854-2864.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ortiz-Cruz, Alejandro & Rodriguez, Eduardo & Ibarra-Valdez, Carlos & Alvarez-Ramirez, Jose, 2012. "Efficiency of crude oil markets: Evidences from informational entropy analysis," Energy Policy, Elsevier, vol. 41(C), pages 365-373.
    2. Zhang, Yongping & Shang, Pengjian & Xiong, Hui, 2019. "Multivariate generalized information entropy of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1212-1223.
    3. López Pérez, Mario & Mansilla Corona, Ricardo, 2022. "Ordinal synchronization and typical states in high-frequency digital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    4. Zambrano-Serrano, Ernesto & Bekiros, Stelios & Platas-Garza, Miguel A. & Posadas-Castillo, Cornelio & Agarwal, Praveen & Jahanshahi, Hadi & Aly, Ayman A., 2021. "On chaos and projective synchronization of a fractional difference map with no equilibria using a fuzzy-based state feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    5. Storhas, Dominik P. & De Mello, Lurion & Singh, Abhay Kumar, 2020. "Multiscale lead-lag relationships in oil and refined product return dynamics: A symbolic wavelet transfer entropy approach," Energy Economics, Elsevier, vol. 92(C).
    6. Wang, Guochao & Zheng, Shenzhou & Wang, Jun, 2019. "Complex and composite entropy fluctuation behaviors of statistical physics interacting financial model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 97-113.
    7. Francesco Benedetto & Gaetano Giunta & Loretta Mastroeni, 2014. "Maximum entropy estimator for the predictability of energy commodity market time series," Departmental Working Papers of Economics - University 'Roma Tre' 0192, Department of Economics - University Roma Tre.
    8. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2020. "Multifractal Analysis of Market Efficiency across Structural Breaks: Implications for the Adaptive Market Hypothesis," JRFM, MDPI, vol. 13(10), pages 1-18, October.
    9. Shahzad, Syed Jawad Hussain & Hernandez, Jose Areola & Hanif, Waqas & Kayani, Ghulam Mujtaba, 2018. "Intraday return inefficiency and long memory in the volatilities of forex markets and the role of trading volume," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 433-450.
    10. Wan, Li & Ling, Guang & Guan, Zhi-Hong & Fan, Qingju & Tong, Yu-Han, 2022. "Fractional multiscale phase permutation entropy for quantifying the complexity of nonlinear time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    11. Busu, Cristian & Busu, Mihail, 2019. "Modeling the predictive power of the singular value decomposition-based entropy. Empirical evidence from the Dow Jones Global Titans 50 Index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    12. Benedetto, F. & Giunta, G. & Mastroeni, L., 2016. "On the predictability of energy commodity markets by an entropy-based computational method," Energy Economics, Elsevier, vol. 54(C), pages 302-312.
    13. Higor Y. D. Sigaki & Matjaz Perc & Haroldo V. Ribeiro, 2019. "Clustering patterns in efficiency and the coming-of-age of the cryptocurrency market," Papers 1901.04967, arXiv.org.
    14. Christoph Bandt, 2019. "Order patterns, their variation and change points in financial time series and Brownian motion," Papers 1910.09978, arXiv.org.
    15. Zhao, Xiaojun & Ji, Mengfan & Zhang, Na & Shang, Pengjian, 2020. "Permutation transition entropy: Measuring the dynamical complexity of financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    16. Chen, Shijian & Shang, Pengjian & Wu, Yue, 2019. "Multivariate multiscale fractional order weighted permutation entropy of nonlinear time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 217-231.
    17. Yin, Yi & Shang, Pengjian & Ahn, Andrew C. & Peng, Chung-Kang, 2019. "Multiscale joint permutation entropy for complex time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 388-402.
    18. Mamdouh Abdulaziz Saleh Al-Faryan & Everton Dockery, 2021. "Testing for efficiency in the Saudi stock market: does corporate governance change matter?," Review of Quantitative Finance and Accounting, Springer, vol. 57(1), pages 61-90, July.
    19. Gu, Rongbao & Xiong, Wei & Li, Xinjie, 2015. "Does the singular value decomposition entropy have predictive power for stock market? — Evidence from the Shenzhen stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 439(C), pages 103-113.
    20. Wang, Lingyu & Sun, Kehui & Peng, Yuexi & He, Shaobo, 2020. "Chaos and complexity in a fractional-order higher-dimensional multicavity chaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:1403829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.