Maximum entropy estimator for the predictability of energy commodity market time series
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2009. "Forbidden patterns, permutation entropy and stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2854-2864.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ortiz-Cruz, Alejandro & Rodriguez, Eduardo & Ibarra-Valdez, Carlos & Alvarez-Ramirez, Jose, 2012. "Efficiency of crude oil markets: Evidences from informational entropy analysis," Energy Policy, Elsevier, vol. 41(C), pages 365-373.
- Zhang, Yongping & Shang, Pengjian & Xiong, Hui, 2019. "Multivariate generalized information entropy of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1212-1223.
- López Pérez, Mario & Mansilla Corona, Ricardo, 2022. "Ordinal synchronization and typical states in high-frequency digital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
- Storhas, Dominik P. & De Mello, Lurion & Singh, Abhay Kumar, 2020. "Multiscale lead-lag relationships in oil and refined product return dynamics: A symbolic wavelet transfer entropy approach," Energy Economics, Elsevier, vol. 92(C).
- Wang, Guochao & Zheng, Shenzhou & Wang, Jun, 2019. "Complex and composite entropy fluctuation behaviors of statistical physics interacting financial model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 97-113.
- Ashok Chanabasangouda Patil & Shailesh Rastogi, 2020. "Multifractal Analysis of Market Efficiency across Structural Breaks: Implications for the Adaptive Market Hypothesis," JRFM, MDPI, vol. 13(10), pages 1-18, October.
- Shahzad, Syed Jawad Hussain & Hernandez, Jose Areola & Hanif, Waqas & Kayani, Ghulam Mujtaba, 2018.
"Intraday return inefficiency and long memory in the volatilities of forex markets and the role of trading volume,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 433-450.
- Syed Jawad Hussain Shahzad & Jose Areola Hernandez & Waqas Hanif & Ghulam Mujtaba Kayani, 2018. "Intraday return inefficiency and long memory in the volatilities of forex markets and the role of trading volume," Post-Print hal-01813245, HAL.
- Busu, Cristian & Busu, Mihail, 2019. "Modeling the predictive power of the singular value decomposition-based entropy. Empirical evidence from the Dow Jones Global Titans 50 Index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
- Benedetto, F. & Giunta, G. & Mastroeni, L., 2016. "On the predictability of energy commodity markets by an entropy-based computational method," Energy Economics, Elsevier, vol. 54(C), pages 302-312.
- Higor Y. D. Sigaki & Matjaz Perc & Haroldo V. Ribeiro, 2019. "Clustering patterns in efficiency and the coming-of-age of the cryptocurrency market," Papers 1901.04967, arXiv.org.
- Christoph Bandt, 2019. "Order patterns, their variation and change points in financial time series and Brownian motion," Papers 1910.09978, arXiv.org.
- Zhao, Xiaojun & Ji, Mengfan & Zhang, Na & Shang, Pengjian, 2020. "Permutation transition entropy: Measuring the dynamical complexity of financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Chen, Shijian & Shang, Pengjian & Wu, Yue, 2019. "Multivariate multiscale fractional order weighted permutation entropy of nonlinear time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 217-231.
- Yin, Yi & Shang, Pengjian & Ahn, Andrew C. & Peng, Chung-Kang, 2019. "Multiscale joint permutation entropy for complex time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 388-402.
- Mamdouh Abdulaziz Saleh Al-Faryan & Everton Dockery, 2021.
"Testing for efficiency in the Saudi stock market: does corporate governance change matter?,"
Review of Quantitative Finance and Accounting, Springer, vol. 57(1), pages 61-90, July.
- Al-Faryan, Mamdouh Abdulaziz Saleh & Dockery, Everton, 2020. "Testing for efficiency in the Saudi stock market: does corporate governance change matter?," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, issue Latest Ar, pages 1-30.
- Gu, Rongbao & Xiong, Wei & Li, Xinjie, 2015. "Does the singular value decomposition entropy have predictive power for stock market? — Evidence from the Shenzhen stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 439(C), pages 103-113.
- Yin, Yi & Shang, Pengjian, 2016. "Weighted permutation entropy based on different symbolic approaches for financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 137-148.
- Zunino, Luciano & Fernández Bariviera, Aurelio & Guercio, M. Belén & Martinez, Lisana B. & Rosso, Osvaldo A., 2012. "On the efficiency of sovereign bond markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(18), pages 4342-4349.
- Zhang, Yongping & Shang, Pengjian, 2018. "Refined composite multiscale weighted-permutation entropy of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 189-199.
- Christoph Bandt, 2020. "Order patterns, their variation and change points in financial time series and Brownian motion," Statistical Papers, Springer, vol. 61(4), pages 1565-1588, August.
More about this item
Keywords
Entropy analysis; market efficiency; energy commodity; energy time;All these keywords.
JEL classification:
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
- Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2014-07-28 (Econometrics)
- NEP-ENE-2014-07-28 (Energy Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rtr:wpaper:0192. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Telephone for information (email available below). General contact details of provider: https://edirc.repec.org/data/dero3it.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.