IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v443y2016icp137-148.html
   My bibliography  Save this article

Weighted permutation entropy based on different symbolic approaches for financial time series

Author

Listed:
  • Yin, Yi
  • Shang, Pengjian

Abstract

In this paper, we introduce weighted permutation entropy (WPE) and three different symbolic approaches to investigate the complexities of stock time series containing amplitude-coded information and explore the influence of using different symbolic approaches on obtained WPE results. We employ WPE based on symbolic approaches to the US and Chinese stock markets and make a comparison between the results of US and Chinese stock markets. Three symbolic approaches are able to help the complexity containing in the stock time series by WPE method drop whatever the embedding dimension is. The similarity between these stock markets can be detected by the WPE based on Binary Δ-coding-method, while the difference between them can be revealed by the WPE based on σ-method, Max–min-method. The combinations of the symbolic approaches: σ-method and Max–min-method, and WPE method are capable of reflecting the multiscale structure of complexity by different time delay and analyze the differences between complexities of stock time series in more detail and more accurately. Furthermore, the correlations between stock markets in the same region and the similarities hidden in the S&P500 and DJI, ShangZheng and ShenCheng are uncovered by the comparison of the WPE based on Binary Δ-coding-method of six stock markets.

Suggested Citation

  • Yin, Yi & Shang, Pengjian, 2016. "Weighted permutation entropy based on different symbolic approaches for financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 137-148.
  • Handle: RePEc:eee:phsmap:v:443:y:2016:i:c:p:137-148
    DOI: 10.1016/j.physa.2015.09.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115008031
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.09.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2009. "Forbidden patterns, permutation entropy and stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2854-2864.
    2. Lan, Boon Leong & Tan, Ying Oon, 2007. "Statistical properties of stock market indices of different economies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 605-611.
    3. Bentes, Sónia R. & Menezes, Rui & Mendes, Diana A., 2008. "Long memory and volatility clustering: Is the empirical evidence consistent across stock markets?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3826-3830.
    4. Darbellay, Georges A & Wuertz, Diethelm, 2000. "The entropy as a tool for analysing statistical dependences in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 429-439.
    5. A. Cortines & C. Anteneodo & R. Riera, 2008. "Stock index dynamics worldwide: a comparative analysis," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 65(2), pages 289-294, September.
    6. Ribeiro, Haroldo V. & Zunino, Luciano & Mendes, Renio S. & Lenzi, Ervin K., 2012. "Complexity–entropy causality plane: A useful approach for distinguishing songs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2421-2428.
    7. Zunino, L. & Tabak, B.M. & Figliola, A. & Pérez, D.G. & Garavaglia, M. & Rosso, O.A., 2008. "A multifractal approach for stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6558-6566.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rong, Lei & Shang, Pengjian, 2018. "New irreversibility measure and complexity analysis based on singular value decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 913-924.
    2. Liu, Hongzhi & Zhang, Xingchen & Zhang, Xie, 2020. "Multiscale complexity analysis on airport air traffic flow volume time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    3. Zhai, Lusheng & Wu, Yinglin & Yang, Jie & Xie, Hailin, 2020. "Characterizing initiation of gas–liquid churn flows using coupling analysis of multivariate time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    4. Zhang, Ningning & Lin, Aijing & Ma, Hui & Shang, Pengjian & Yang, Pengbo, 2018. "Weighted multivariate composite multiscale sample entropy analysis for the complexity of nonlinear times series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 595-607.
    5. Liu, Hongzhi & Zhang, Xie & Hu, Huaqing & Zhang, Xingchen, 2022. "Exploring the impact of flow values on multiscale complexity quantification of airport flight flow fluctuations," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    6. Han, Yun-Feng & Jin, Ning-De & Zhai, Lu-Sheng & Ren, Ying-Yu & He, Yuan-Sheng, 2019. "An investigation of oil–water two-phase flow instability using multivariate multi-scale weighted permutation entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 131-144.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
    2. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2009. "Forbidden patterns, permutation entropy and stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2854-2864.
    3. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa & de Oliveira, Wilson & Stosic, Tatijana, 2016. "Foreign exchange rate entropy evolution during financial crises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 233-239.
    4. Yin, Yi & Shang, Pengjian & Ahn, Andrew C. & Peng, Chung-Kang, 2019. "Multiscale joint permutation entropy for complex time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 388-402.
    5. Zunino, Luciano & Bariviera, Aurelio F. & Guercio, M. Belén & Martinez, Lisana B. & Rosso, Osvaldo A., 2016. "Monitoring the informational efficiency of European corporate bond markets with dynamical permutation min-entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 1-9.
    6. Ortiz-Cruz, Alejandro & Rodriguez, Eduardo & Ibarra-Valdez, Carlos & Alvarez-Ramirez, Jose, 2012. "Efficiency of crude oil markets: Evidences from informational entropy analysis," Energy Policy, Elsevier, vol. 41(C), pages 365-373.
    7. Shahzad, Syed Jawad Hussain & Nor, Safwan Mohd & Mensi, Walid & Kumar, Ronald Ravinesh, 2017. "Examining the efficiency and interdependence of US credit and stock markets through MF-DFA and MF-DXA approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 351-363.
    8. Gu, Rongbao & Xiong, Wei & Li, Xinjie, 2015. "Does the singular value decomposition entropy have predictive power for stock market? — Evidence from the Shenzhen stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 439(C), pages 103-113.
    9. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa B. & Stosic, Tatijana, 2019. "Exploring disorder and complexity in the cryptocurrency space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 548-556.
    10. F. Benedetto & L. Mastroeni & P. Vellucci, 2021. "Modeling the flow of information between financial time-series by an entropy-based approach," Annals of Operations Research, Springer, vol. 299(1), pages 1235-1252, April.
    11. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa & Stosic, Tatijana, 2016. "Correlations of multiscale entropy in the FX market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 52-61.
    12. Alvarez-Ramirez, Jose & Rodriguez, Eduardo, 2021. "A singular value decomposition entropy approach for testing stock market efficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    13. Martina, Esteban & Rodriguez, Eduardo & Escarela-Perez, Rafael & Alvarez-Ramirez, Jose, 2011. "Multiscale entropy analysis of crude oil price dynamics," Energy Economics, Elsevier, vol. 33(5), pages 936-947, September.
    14. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2020. "Multifractal Analysis of Market Efficiency across Structural Breaks: Implications for the Adaptive Market Hypothesis," JRFM, MDPI, vol. 13(10), pages 1-18, October.
    15. Benedetto, F. & Giunta, G. & Mastroeni, L., 2016. "On the predictability of energy commodity markets by an entropy-based computational method," Energy Economics, Elsevier, vol. 54(C), pages 302-312.
    16. Zunino, Luciano & Fernández Bariviera, Aurelio & Guercio, M. Belén & Martinez, Lisana B. & Rosso, Osvaldo A., 2012. "On the efficiency of sovereign bond markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(18), pages 4342-4349.
    17. Kuang-Ting Chen, 2015. "Modeling Market Inefficiencies within a Single Instrument," Papers 1511.02046, arXiv.org.
    18. Wang, Zhuo & Shang, Pengjian, 2021. "Generalized entropy plane based on multiscale weighted multivariate dispersion entropy for financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    19. Jiang, Jiaqi & Gu, Rongbao, 2016. "Using Rényi parameter to improve the predictive power of singular value decomposition entropy on stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 254-264.
    20. Zunino, Luciano & Tabak, Benjamin M. & Serinaldi, Francesco & Zanin, Massimiliano & Pérez, Darío G. & Rosso, Osvaldo A., 2011. "Commodity predictability analysis with a permutation information theory approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 876-890.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:443:y:2016:i:c:p:137-148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.