IDEAS home Printed from https://ideas.repec.org/a/hin/complx/5674392.html
   My bibliography  Save this article

Automated Epileptic Seizure Detection in Scalp EEG Based on Spatial-Temporal Complexity

Author

Listed:
  • Xinzhong Zhu
  • Huiying Xu
  • Jianmin Zhao
  • Jie Tian

Abstract

Epilepsy is a group of neurological disorders characterized by epileptic seizures, wherein electroencephalogram (EEG) is one of the most common technologies used to diagnose, monitor, and manage patients with epilepsy. A large number of EEGs have been recorded in clinical applications, which leads to visual inspection of huge volumes of EEG not routinely possible. Hence, automated detection of epileptic seizure has become a goal of many researchers for a long time. A novel method is therefore proposed to construct a patient-specific detector based on spatial-temporal complexity analysis, involving two commonly used entropy-based complexity analysis methods, which are permutation entropy (PE) and sample entropy (SE). The performance of spatial-temporal complexity method is evaluated on a shared dataset. Results suggest that the proposed epilepsy detectors achieve promising performance: the average sensitivities of PE and SE in 23 patients are 99% and 96.6%, respectively. Moreover, both methods can accurately recognize almost all the seizure-free EEG. The proposed method not only obtains a high accuracy rate but also meets the real-time requirements for its application on seizure detection, which suggests that the proposed method has the potential of detecting epileptic seizures in real time.

Suggested Citation

  • Xinzhong Zhu & Huiying Xu & Jianmin Zhao & Jie Tian, 2017. "Automated Epileptic Seizure Detection in Scalp EEG Based on Spatial-Temporal Complexity," Complexity, Hindawi, vol. 2017, pages 1-8, December.
  • Handle: RePEc:hin:complx:5674392
    DOI: 10.1155/2017/5674392
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2017/5674392.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2017/5674392.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/5674392?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Duo Chen & Suiren Wan & Jing Xiang & Forrest Sheng Bao, 2017. "A high-performance seizure detection algorithm based on Discrete Wavelet Transform (DWT) and EEG," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pinar Deniz Tosun & Derk-Jan Dijk & Raphaelle Winsky-Sommerer & Daniel Abasolo, 2019. "Effects of Ageing and Sex on Complexity in the Human Sleep EEG: A Comparison of Three Symbolic Dynamic Analysis Methods," Complexity, Hindawi, vol. 2019, pages 1-12, January.
    2. Zhe Chen & Yaan Li & Hongtao Liang & Jing Yu, 2019. "Improved Permutation Entropy for Measuring Complexity of Time Series under Noisy Condition," Complexity, Hindawi, vol. 2019, pages 1-12, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panja, Madhurima & Chakraborty, Tanujit & Nadim, Sk Shahid & Ghosh, Indrajit & Kumar, Uttam & Liu, Nan, 2023. "An ensemble neural network approach to forecast Dengue outbreak based on climatic condition," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    2. Ahmad al-Qerem & Faten Kharbat & Shadi Nashwan & Staish Ashraf & khairi blaou, 2020. "General model for best feature extraction of EEG using discrete wavelet transform wavelet family and differential evolution," International Journal of Distributed Sensor Networks, , vol. 16(3), pages 15501477209, March.
    3. Xue-song Tang & Luchao Jiang & Kuangrong Hao & Tong Wang & Xiaoyan Liu, 2023. "A Moth–Flame Optimized Echo State Network and Triplet Feature Extractor for Epilepsy Electro-Encephalography Signals," Mathematics, MDPI, vol. 11(6), pages 1-16, March.
    4. Xiaolei Zhang & Weijun Pan, 2019. "Exon prediction based on multiscale products of a genomic-inspired multiscale bilateral filtering," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-15, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5674392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.