Modeling of the molten blast furnace slag particle deposition on the wall including phase change and heat transfer
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2019.04.100
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Hong & Wu, Jun-Jun & Zhu, Xun & Liao, Qiang & Zhao, Liang, 2016. "Energy–environment–economy evaluations of commercial scale systems for blast furnace slag treatment: Dry slag granulation vs. water quenching," Applied Energy, Elsevier, vol. 171(C), pages 314-324.
- Zhang, Hui & Wang, Hong & Zhu, Xun & Qiu, Yong-Jun & Li, Kai & Chen, Rong & Liao, Qiang, 2013. "A review of waste heat recovery technologies towards molten slag in steel industry," Applied Energy, Elsevier, vol. 112(C), pages 956-966.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wu, Junjun & Tan, Yu & Li, Peng & Wang, Hong & Zhu, Xun & Liao, Qiang, 2022. "Centrifugal-Granulation-Assisted thermal energy recovery towards low-carbon blast furnace slag treatment: State of the art and future challenges," Applied Energy, Elsevier, vol. 325(C).
- Zhang, Huining & Dong, Jianping & Wei, Chao & Cao, Caifang & Zhang, Zuotai, 2022. "Future trend of terminal energy conservation in steelmaking plant: Integration of molten slag heat recovery-combustible gas preparation from waste plastics and CO2 emission reduction," Energy, Elsevier, vol. 239(PE).
- Genevieve Soon & Hui Zhang & Adrian Wing-Keung Law & Chun Yang, 2023. "Computational Modelling on Gasification Processes of Municipal Solid Wastes Including Molten Slag," Waste, MDPI, vol. 1(2), pages 1-19, April.
- Tan, Yu & Wang, Hong & Zhu, Xun & Lv, Yi-Wen & Ding, Yu-Dong & Liao, Qiang, 2020. "Film fragmentation mode: The most suitable way for centrifugal granulation of large flow rate molten blast slag towards high-efficiency waste heat recovery for industrialization," Applied Energy, Elsevier, vol. 276(C).
- Li, Qiang & Wang, Qian & Zhang, Jiansheng & Wang, Weiliang & Liu, Jizhen, 2021. "Transition temperature and thermal conduction behavior of slag in gasification process," Energy, Elsevier, vol. 222(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Duan, Wenjun & Yu, Qingbo & Wang, Zhimei & Liu, Junxiang & Qin, Qin, 2018. "Life cycle and economic assessment of multi-stage blast furnace slag waste heat recovery system," Energy, Elsevier, vol. 142(C), pages 486-495.
- Zuo, Zongliang & Feng, Yan & Li, Xiaoteng & Luo, Siyi & Ma, Jinshuang & Sun, Huiping & Bi, Xuejun & Yu, Qingbo & Zhou, Enze & Zhang, Jingkui & Guo, Jianxiang & Lin, Huan, 2021. "Thermal-chemical conversion of sewage sludge based on waste heat cascade recovery of copper slag: Mass and energy analysis," Energy, Elsevier, vol. 235(C).
- Zhang, Kai & Du, Shiqi & Sun, Peng & Zheng, Bin & Liu, Yongqi & Shen, Yingkai & Chang, RunZe & Han, Xiaobiao, 2021. "The effect of particle arrangement on the direct heat extraction of regular packed bed with numerical simulation," Energy, Elsevier, vol. 225(C).
- Wu, Junjun & Tan, Yu & Li, Peng & Wang, Hong & Zhu, Xun & Liao, Qiang, 2022. "Centrifugal-Granulation-Assisted thermal energy recovery towards low-carbon blast furnace slag treatment: State of the art and future challenges," Applied Energy, Elsevier, vol. 325(C).
- Tan, Yu & Wang, Hong & Zhu, Xun & Lv, Yi-Wen & Ding, Yu-Dong & Liao, Qiang, 2020. "Film fragmentation mode: The most suitable way for centrifugal granulation of large flow rate molten blast slag towards high-efficiency waste heat recovery for industrialization," Applied Energy, Elsevier, vol. 276(C).
- Ding, Jing & Wang, Yarong & Gu, Rong & Wang, Weilong & Lu, Jianfeng, 2019. "Thermochemical storage performance of methane reforming with carbon dioxide using high temperature slag," Applied Energy, Elsevier, vol. 250(C), pages 1270-1279.
- Jung, Chung Woo & Song, Joo Young & Kang, Yong Tae, 2018. "Study on ammonia/water hybrid absorption/compression heat pump cycle to produce high temperature process water," Energy, Elsevier, vol. 145(C), pages 458-467.
- Huang, Jintao & Lyu, Sha & Han, He & Wang, Yanjiang & Sun, Haoyang & Su, Jingtao & Liu, Yidong & Min, Yonggang & Sun, Dazhi, 2022. "Enhanced looping biomass/vapour gasification utilizing waste heat from molten copper slags," Energy, Elsevier, vol. 252(C).
- Zhiwen Zhou & Yiming Lai & Qin Peng & Jun Li, 2021. "Comparative Life Cycle Assessment of Merging Recycling Methods for Spent Lithium Ion Batteries," Energies, MDPI, vol. 14(19), pages 1-18, October.
- Yang, Sheng & Yang, Siyu & Wang, Yifan & Qian, Yu, 2017. "Low grade waste heat recovery with a novel cascade absorption heat transformer," Energy, Elsevier, vol. 130(C), pages 461-472.
- Ortega-Fernández, Iñigo & Rodríguez-Aseguinolaza, Javier, 2019. "Thermal energy storage for waste heat recovery in the steelworks: The case study of the REslag project," Applied Energy, Elsevier, vol. 237(C), pages 708-719.
- Li, Yuan & Zhu, Lei, 2014. "Cost of energy saving and CO2 emissions reduction in China’s iron and steel sector," Applied Energy, Elsevier, vol. 130(C), pages 603-616.
- Pablo Donoso-García & Luis Henríquez-Vargas & Esteban Huerta, 2022. "Waste Heat Recovery from Air Using Porous Media and Conversion to Electricity," Energies, MDPI, vol. 15(15), pages 1-17, August.
- Jouhara, Hussam & Almahmoud, Sulaiman & Chauhan, Amisha & Delpech, Bertrand & Bianchi, Giuseppe & Tassou, Savvas A. & Llera, Rocio & Lago, Francisco & Arribas, Juan José, 2017. "Experimental and theoretical investigation of a flat heat pipe heat exchanger for waste heat recovery in the steel industry," Energy, Elsevier, vol. 141(C), pages 1928-1939.
- Zichao Wei & Xiaomin Liu & Guangwen Hu & Kai Xue & Yufeng Wu, 2023. "Research Progress on Iron- and Steelmaking Iste Slag-Based Glass-Ceramics: Preparation and GHG Emission Reduction Potentials," Sustainability, MDPI, vol. 15(24), pages 1-20, December.
- Zhu, Lei & Zhang, Xiao-Bing & Li, Yuan & Wang, Xu & Guo, Jianxin, 2017. "Can an emission trading scheme promote the withdrawal of outdated capacity in energy-intensive sectors? A case study on China's iron and steel industry," Energy Economics, Elsevier, vol. 63(C), pages 332-347.
- Sun, Yongqi & Seetharaman, Seshadri & Liu, Qianyi & Zhang, Zuotai & Liu, Lili & Wang, Xidong, 2016. "Integrated biomass gasification using the waste heat from hot slags: Control of syngas and polluting gas releases," Energy, Elsevier, vol. 114(C), pages 165-176.
- Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2014. "Bioreducer use in Finnish blast furnace ironmaking – Analysis of CO2 emission reduction potential and mitigation cost," Applied Energy, Elsevier, vol. 124(C), pages 82-93.
- Mondejar, M.E. & Andreasen, J.G. & Pierobon, L. & Larsen, U. & Thern, M. & Haglind, F., 2018. "A review of the use of organic Rankine cycle power systems for maritime applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 126-151.
- Maas, Pascal & Schiemann, Martin & Scherer, Viktor & Fischer, Peter & Taroata, Dan & Schmid, Günther, 2018. "Lithium as energy carrier: CFD simulations of LI combustion in a 100MW slag tap furnace," Applied Energy, Elsevier, vol. 227(C), pages 506-515.
More about this item
Keywords
Molten blast furnace slag; Impact; VOF method; Solidification/melting model; Numerical simulation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:248:y:2019:i:c:p:288-298. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.