IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v14y2025i3p51-d1614944.html
   My bibliography  Save this article

Model for Assessing Efficiency of Processing Geo-Resources, Providing Full Cycle for Development—Case Study in Russia

Author

Listed:
  • Cheynesh Kongar-Syuryun

    (Mining Department, Saint Petersburg Mining University, 21st Line, 2, 199106 Saint Petersburg, Russia)

  • Nikita Babyr

    (Department of Mechanical Engineering, Saint Petersburg Mining University, 21st Line, 2, 199106 Saint Petersburg, Russia)

  • Roman Klyuev

    (Technique and Technology of Mining and Oil and Gas Production Department, Moscow Polytechnic University, B. Semenovskaya St., 38, 107023 Moscow, Russia)

  • Marat Khayrutdinov

    (Itasca Consultants GmbH, Leithestrasse Str., 111a, 45886 Gelsenkirchen, Germany)

  • Vladislav Zaalishvili

    (Geophysical Institute of Vladikavkaz Scientific Centre, Russian Academy of Sciences, Markova Str., 93A, 362002 Vladikavkaz, Russia)

  • Valery Agafonov

    (Mining Department, MISIS University of Science and Technology, Leninsky Ave., 4, 119991 Moscow, Russia)

Abstract

The environmental impact and occurrence of frequent ecological disasters have prompted a reassessment of societal values in the modern era. There has been a shift in the economic model, moving away from the pursuit of extensive growth towards a sustainable development model that prioritizes the preservation of the natural balance. This issue is of particular relevance in regions where mining activities are prevalent. In such regions, mining enterprises exert a considerable burden on the ecosystem, acting as significant sources of industrial waste. In light of the aforementioned considerations, the objective of this study is to develop a model for assessing the efficiency of industrial geo-resource recycling, taking into account both environmental and economic factors. The methodology is founded upon the principles of the efficient and comprehensive exploitation of natural and industrial geo-resources, in alignment with the tenets of sustainable development and the theoretical tenets of a cyclic economy. The methodology for assessing the efficiency of geo-resource recycling is based on the following three principal analytical approaches: economic and statistical, structural and logical, and comparative. The article examines the genesis of industrial waste, delineates the divergent patterns of the accumulation and utilization of mining waste, and classifies categories of industrial waste. The principal stages of the feasibility study are delineated, an algorithm is devised, and a model for evaluating the efficacy of industrial raw material recycling is proposed. The enumerated factors facilitate the recommendation of the model in the selection of the most optimal investment project in industrial geo-resource recycling.

Suggested Citation

  • Cheynesh Kongar-Syuryun & Nikita Babyr & Roman Klyuev & Marat Khayrutdinov & Vladislav Zaalishvili & Valery Agafonov, 2025. "Model for Assessing Efficiency of Processing Geo-Resources, Providing Full Cycle for Development—Case Study in Russia," Resources, MDPI, vol. 14(3), pages 1-23, March.
  • Handle: RePEc:gam:jresou:v:14:y:2025:i:3:p:51-:d:1614944
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/14/3/51/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/14/3/51/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vladimir Brigida & Vladimir Ivanovich Golik & Elena V. Voitovich & Vladislav V. Kukartsev & Valeriy E. Gozbenko & Vladimir Yu. Konyukhov & Tatiana A. Oparina, 2024. "Technogenic Reservoirs Resources of Mine Methane When Implementing the Circular Waste Management Concept," Resources, MDPI, vol. 13(2), pages 1-14, February.
    2. Marcos L. S. Oliveira & Gabriela Oliveira Valença & Diana Pinto & Leila Dal Moro & Brian William Bodah & Giana de Vargas Mores & Julian Grub & Bashir Adelodun & Alcindo Neckel, 2023. "Hazardous Elements in Sediments Detected in Former Decommissioned Coal Mining Areas in Colombia: A Need for Environmental Recovery," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    3. Vladimir I. Golik & Mikhail F. Mitsik & Yulia V. Aleksakhina & Elena E. Alenina & Natalia V. Ruban-Lazareva & Galina V. Kruzhkova & Olga A. Kondratyeva & Ekaterina V. Trushina & Oleg O. Skryabin & Mar, 2023. "Comprehensive Recovery of Metals in Tailings Utilization with Mechanochemical Activation," Resources, MDPI, vol. 12(10), pages 1-22, September.
    4. Jiu Huang & Chuyuan Tian & Longfei Xing & Zhengfu Bian & Xiexing Miao, 2017. "Green and Sustainable Mining: Underground Coal Mine Fully Mechanized Solid Dense Stowing-Mining Method," Sustainability, MDPI, vol. 9(8), pages 1-18, August.
    5. Upadhyay, Arvind & Laing, Tim & Kumar, Vikas & Dora, Manoj, 2021. "Exploring barriers and drivers to the implementation of circular economy practices in the mining industry," Resources Policy, Elsevier, vol. 72(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marat M. Khayrutdinov & Vladimir I. Golik & Alexander V. Aleksakhin & Ekaterina V. Trushina & Natalia V. Lazareva & Yulia V. Aleksakhina, 2022. "Proposal of an Algorithm for Choice of a Development System for Operational and Environmental Safety in Mining," Resources, MDPI, vol. 11(10), pages 1-16, September.
    2. Deyu Qian & Nong Zhang & Dongjiang Pan & Zhengzheng Xie & Hideki Shimada & Yang Wang & Chenghao Zhang & Nianchao Zhang, 2017. "Stability of Deep Underground Openings through Large Fault Zones in Argillaceous Rock," Sustainability, MDPI, vol. 9(11), pages 1-28, November.
    3. Yanez-Rosales, Pablo & Río-Gamero, B. Del & Schallenberg-Rodríguez, Julieta, 2024. "Rationale for selecting the most suitable areas for offshore wind energy farms in isolated island systems. Case study: Canary Islands," Energy, Elsevier, vol. 307(C).
    4. Zhiyi Zhang & Hideki Shimada & Takashi Sasaoka & Akihiro Hamanaka, 2017. "Stability Control of Retained Goaf-Side Gateroad under Different Roof Conditions in Deep Underground Y Type Longwall Mining," Sustainability, MDPI, vol. 9(10), pages 1-19, September.
    5. Oksana Marinina & Natalia Kirsanova & Marina Nevskaya, 2022. "Circular Economy Models in Industry: Developing a Conceptual Framework," Energies, MDPI, vol. 15(24), pages 1-21, December.
    6. Li, Yongbo & Barrueta Pinto, Mark Christhian & Kumar, D. Thresh, 2023. "Analyzing sustainability indicator for Chinese mining sector," Resources Policy, Elsevier, vol. 80(C).
    7. Farrukh, Amna & Mathrani, Sanjay & Sajjad, Aymen, 2023. "Green-lean-six sigma practices and supporting factors for transitioning towards circular economy: A natural resource and intellectual capital-based view," Resources Policy, Elsevier, vol. 84(C).
    8. Gilbert Silvius & Aydan Ismayilova & Vicente Sales-Vivó & Micol Costi, 2021. "Exploring Barriers for Circularity in the EU Furniture Industry," Sustainability, MDPI, vol. 13(19), pages 1-25, October.
    9. Wenbing Guo & Mingjie Guo & Yi Tan & Erhu Bai & Gaobo Zhao, 2019. "Sustainable Development of Resources and the Environment: Mining-Induced Eco-Geological Environmental Damage and Mitigation Measures—A Case Study in the Henan Coal Mining Area, China," Sustainability, MDPI, vol. 11(16), pages 1-34, August.
    10. Mathivathanan, Deepak & Mathiyazhagan, K. & Khorana, Sangeeta & Rana, Nripendra P. & Arora, Bimal, 2022. "Drivers of circular economy for small and medium enterprises: Case study on the Indian state of Tamil Nadu," Journal of Business Research, Elsevier, vol. 149(C), pages 997-1015.
    11. Osei, Vivian & Bai, Chunguang & Asante-Darko, Disraeli & Quayson, Matthew, 2023. "Evaluating the barriers and drivers of adopting circular economy for improving sustainability in the mining industry," Resources Policy, Elsevier, vol. 86(PB).
    12. Jiu Huang & Peng Wang & Chaorong Xu & Zhuangzhuang Zhu, 2018. "Fly Ash Modified Coalmine Solid Wastes for Stabilization of Trace Metals in Mining Damaged Land Reclamation: A Case Study in Xuzhou Coalmine Area," IJERPH, MDPI, vol. 15(10), pages 1-23, October.
    13. Honglei Liu & Qiang Wu & Jianxin Chen & Mingjun Wang & Di Zhao & Cheng Duan, 2021. "Environmental Impacts Related to Closed Mines in Inner Mongolia," Sustainability, MDPI, vol. 13(23), pages 1-19, December.
    14. She, Weijun & Mabrouk, Fatma, 2023. "Impact of natural resources and globalization on green economic recovery: Role of FDI and green innovations in BRICS economies," Resources Policy, Elsevier, vol. 82(C).
    15. Julia Romano Sanches & Adriana Hofmann Trevisan & Bruno Michel Roman Pais Seles & Camila Gonçalves Castro & Roberta Souza Piao & Henrique Rozenfeld & Janaina Mascarenhas, 2022. "Sustainable Circular Economy Strategies: An Analysis of Brazilian Corporate Sustainability Reporting," Sustainability, MDPI, vol. 14(10), pages 1-26, May.
    16. Yao Lu & Ning Jiang & Wei Lu & Meng Zhang & Dezhi Kong & Mengtang Xu & Changxiang Wang, 2022. "Experimental Study on Deformation Characteristics of Gangue Backfill Zone under the Condition of Natural Water in Deep Mines," Sustainability, MDPI, vol. 14(23), pages 1-16, November.
    17. Gedam, Vidyadhar V. & Raut, Rakesh D. & Lopes de Sousa Jabbour, Ana Beatriz & Agrawal, Nishant, 2021. "Moving the circular economy forward in the mining industry: Challenges to closed-loop in an emerging economy," Resources Policy, Elsevier, vol. 74(C).
    18. Upadhyay, Saurabh, 2022. "Drivers for sustainable mining waste management – A mixed-method study on the Indian Mining Industry," Resources Policy, Elsevier, vol. 79(C).
    19. Jandieri, Gigo, 2022. "A generalized model for assessing and intensifying the recycling of metal-bearing industrial waste: A new approach to the resource policy of manganese industry in Georgia," Resources Policy, Elsevier, vol. 75(C).
    20. de la Torre de Palacios, Luis & Espí Rodríguez, José Antonio, 2022. "In mining, not everything is a circular economy: Case studies from recent mining projects in Iberia," Resources Policy, Elsevier, vol. 78(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:14:y:2025:i:3:p:51-:d:1614944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.