IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i11p2153-d119978.html
   My bibliography  Save this article

Stability of Deep Underground Openings through Large Fault Zones in Argillaceous Rock

Author

Listed:
  • Deyu Qian

    (Key Laboratory of Deep Coal Resource Mining, Ministry of Education of China, School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

  • Nong Zhang

    (Key Laboratory of Deep Coal Resource Mining, Ministry of Education of China, School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

  • Dongjiang Pan

    (Key Laboratory of Deep Coal Resource Mining, Ministry of Education of China, School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

  • Zhengzheng Xie

    (Key Laboratory of Deep Coal Resource Mining, Ministry of Education of China, School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

  • Hideki Shimada

    (Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan)

  • Yang Wang

    (Key Laboratory of Deep Coal Resource Mining, Ministry of Education of China, School of Mines, China University of Mining and Technology, Xuzhou 221116, China
    School of Public Policy and Urban Affairs, College of Social Sciences and Humanities, Northeastern University, Boston, MA 02115, USA)

  • Chenghao Zhang

    (Key Laboratory of Deep Coal Resource Mining, Ministry of Education of China, School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

  • Nianchao Zhang

    (School of Earth Sciences, University of Queensland, St Lucia, QLD 4072, Australia)

Abstract

The stability of underground openings is pivotal to sustainable safe mining in underground coal mines. To determine the stability and tunneling safety issues in 800-m-deep underground openings through large fault zones in argillaceous rocks in the Guqiao Coal Mine in East China, the pilot industrial test, laboratory experimentation, and field measurements were used to analyze the large deformations and failure characteristics of the surrounding rock, the influence factors of safe excavation and stability of underground openings, and to study the stability control countermeasures. The main factors influencing the stability and tunneling safety include large fault zones, high in situ stress, poor mechanical properties and engineering performance of the argillaceous rock mass, groundwater inrush and gas outburst. According to the field study, the anchor-ability of cables and the groutability of cement-matrix materials in the argillaceous rock in the large fault zones were extremely poor, and deformations and failure of the surrounding rock were characterized by dramatic initial deformation, high long-term creep rate, obviously asymmetric deformations and failure, rebound of roof displacements, overall loosened deformations of deep surrounding rock on a large scale, and high sensitivity to engineering disturbance and water immersion. Various geo-hazards occurred during the pilot excavation, including roof collapse, groundwater inrush, and debris flow. Control techniques are proposed and should be adopted to ensure tunneling safety and to control the stability of deep underground openings through large fault zones, including regional strata reinforcement technique such as ground surface pre-grouting, primary enhanced control measures, floor grouting reinforcement technique, and secondary enclosed support measures for long-term stability, which are critical for ensuring the sustainable development of the coal mine.

Suggested Citation

  • Deyu Qian & Nong Zhang & Dongjiang Pan & Zhengzheng Xie & Hideki Shimada & Yang Wang & Chenghao Zhang & Nianchao Zhang, 2017. "Stability of Deep Underground Openings through Large Fault Zones in Argillaceous Rock," Sustainability, MDPI, vol. 9(11), pages 1-28, November.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:11:p:2153-:d:119978
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/11/2153/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/11/2153/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Ke & Wei, Yi-Ming & Zhang, Xian, 2013. "Energy and emissions efficiency patterns of Chinese regions: A multi-directional efficiency analysis," Applied Energy, Elsevier, vol. 104(C), pages 105-116.
    2. Zhiyi Zhang & Hideki Shimada & Takashi Sasaoka & Akihiro Hamanaka, 2017. "Stability Control of Retained Goaf-Side Gateroad under Different Roof Conditions in Deep Underground Y Type Longwall Mining," Sustainability, MDPI, vol. 9(10), pages 1-19, September.
    3. Yubing Gao & Dongqiao Liu & Xingyu Zhang & Manchao He, 2017. "Analysis and Optimization of Entry Stability in Underground Longwall Mining," Sustainability, MDPI, vol. 9(11), pages 1-19, November.
    4. Fu, Feng & Liu, Hongtao & Polenske, Karen R. & Li, Zheng, 2013. "Measuring the energy consumption of China’s domestic investment from 1992 to 2007," Applied Energy, Elsevier, vol. 102(C), pages 1267-1274.
    5. Jiu Huang & Chuyuan Tian & Longfei Xing & Zhengfu Bian & Xiexing Miao, 2017. "Green and Sustainable Mining: Underground Coal Mine Fully Mechanized Solid Dense Stowing-Mining Method," Sustainability, MDPI, vol. 9(8), pages 1-18, August.
    6. Wang, Lei & Cheng, Yuan-Ping, 2012. "Drainage and utilization of Chinese coal mine methane with a coal–methane co-exploitation model: Analysis and projections," Resources Policy, Elsevier, vol. 37(3), pages 315-321.
    7. Kong, Shengli & Cheng, Yuanping & Ren, Ting & Liu, Hongyong, 2014. "A sequential approach to control gas for the extraction of multi-gassy coal seams from traditional gas well drainage to mining-induced stress relief," Applied Energy, Elsevier, vol. 131(C), pages 67-78.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaojun Zhu & Feng Zha & Hua Cheng & Liugen Zheng & Hui Liu & Wenshan Huang & Yu Yan & Liangjun Dai & Shenzhu Fang & Xiaoyu Yang, 2022. "Spatial Pattern Reconstruction of Water and Land Resources in Coal Mining Subsidence Areas within Urban Regions," Sustainability, MDPI, vol. 14(18), pages 1-24, September.
    2. Krzysztof Skrzypkowski & Krzysztof Zagórski & Anna Zagórska & Derek B. Apel & Jun Wang & Huawei Xu & Lijie Guo, 2022. "Choice of the Arch Yielding Support for the Preparatory Roadway Located near the Fault," Energies, MDPI, vol. 15(10), pages 1-21, May.
    3. Zhengzheng Xie & Nong Zhang & Deyu Qian & Changliang Han & Yanpei An & Yang Wang, 2018. "Rapid Excavation and Stability Control of Deep Roadways for an Underground Coal Mine with High Production in Inner Mongolia," Sustainability, MDPI, vol. 10(4), pages 1-17, April.
    4. Kai Wang & Lianguo Wang & Bo Ren, 2021. "Failure Mechanism Analysis and Support Technology for Roadway Tunnel in Fault Fracture Zone: A Case Study," Energies, MDPI, vol. 14(13), pages 1-19, June.
    5. Gangye Guo & Hongpu Kang & Deyu Qian & Fuqiang Gao & Yang Wang, 2018. "Mechanism for Controlling Floor Heave of Mining Roadways Using Reinforcing Roof and Sidewalls in Underground Coal Mine," Sustainability, MDPI, vol. 10(5), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haijun Guo & Zhixiang Cheng & Kai Wang & Baolin Qu & Liang Yuan & Chao Xu, 2020. "Coal permeability evolution characteristics: Analysis under different loading conditions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(2), pages 347-363, April.
    2. Hengjie Luan & Yujing Jiang & Huili Lin & Guofeng Li, 2018. "Development of a New Gob-Side Entry-Retaining Approach and Its Application," Sustainability, MDPI, vol. 10(2), pages 1-15, February.
    3. Kong, Shengli & Cheng, Yuanping & Ren, Ting & Liu, Hongyong, 2014. "A sequential approach to control gas for the extraction of multi-gassy coal seams from traditional gas well drainage to mining-induced stress relief," Applied Energy, Elsevier, vol. 131(C), pages 67-78.
    4. Gangye Guo & Hongpu Kang & Deyu Qian & Fuqiang Gao & Yang Wang, 2018. "Mechanism for Controlling Floor Heave of Mining Roadways Using Reinforcing Roof and Sidewalls in Underground Coal Mine," Sustainability, MDPI, vol. 10(5), pages 1-15, May.
    5. Qin, Quande & Li, Xin & Li, Li & Zhen, Wei & Wei, Yi-Ming, 2017. "Air emissions perspective on energy efficiency: An empirical analysis of China’s coastal areas," Applied Energy, Elsevier, vol. 185(P1), pages 604-614.
    6. Atkinson, Scott E. & Tsionas, Mike G., 2021. "Generalized estimation of productivity with multiple bad outputs: The importance of materials balance constraints," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1165-1186.
    7. Huayong Niu & Zhishuo Zhang & Manting Luo, 2022. "Evaluation and Prediction of Low-Carbon Economic Efficiency in China, Japan and South Korea: Based on DEA and Machine Learning," IJERPH, MDPI, vol. 19(19), pages 1-28, October.
    8. Marat M. Khayrutdinov & Vladimir I. Golik & Alexander V. Aleksakhin & Ekaterina V. Trushina & Natalia V. Lazareva & Yulia V. Aleksakhina, 2022. "Proposal of an Algorithm for Choice of a Development System for Operational and Environmental Safety in Mining," Resources, MDPI, vol. 11(10), pages 1-16, September.
    9. Manevska-Tasevska, Gordana & Hansson, Helena & Asmild, Mette & Surry, Yves, 2018. "Assessing the regional efficiency of Swedish agriculture under the CAP ‒ a multidirectional efficiency approach," 162nd Seminar, April 26-27, 2018, Budapest, Hungary 271971, European Association of Agricultural Economists.
    10. Zhou, X. & Fan, L.W. & Zhou, P., 2015. "Marginal CO2 abatement costs: Findings from alternative shadow price estimates for Shanghai industrial sectors," Energy Policy, Elsevier, vol. 77(C), pages 109-117.
    11. Yang Yu & Jianbiao Bai & Xiangyu Wang & Lianying Zhang, 2020. "Control of the Surrounding Rock of a Goaf-Side Entry Driving Heading Mining Face," Sustainability, MDPI, vol. 12(7), pages 1-16, March.
    12. Qiong Xia & Min Li & Huaqing Wu & Zhenggang Lu, 2016. "Does the Central Government’s Environmental Policy Work? Evidence from the Provincial-Level Environment Efficiency in China," Sustainability, MDPI, vol. 8(12), pages 1-17, December.
    13. Fan, Lurong & Xu, Jiuping, 2020. "Authority–enterprise equilibrium based mixed subsidy mechanism for carbon reduction and energy utilization in the coalbed methane industry," Energy Policy, Elsevier, vol. 147(C).
    14. Zebin Zheng & Wenjun Xiao & Ziye Cheng, 2023. "China’s Green Total Factor Energy Efficiency Assessment Based on Coordinated Reduction in Pollution and Carbon Emission: From the 11th to the 13th Five-Year Plan," Sustainability, MDPI, vol. 15(9), pages 1-20, April.
    15. Wenlong Shen & Meng Wang & Zhengzheng Cao & Faqiang Su & Hua Nan & Xuelong Li, 2019. "Mining-Induced Failure Criteria of Interactional Hard Roof Structures: A Case Study," Energies, MDPI, vol. 12(15), pages 1-17, August.
    16. Zhao, Xing & Guo, Yifan & Feng, Tianchu, 2023. "Towards green recovery: Natural resources utilization efficiency under the impact of environmental information disclosure," Resources Policy, Elsevier, vol. 83(C).
    17. Ke Wang & Xueying Yu, 2017. "Industrial Energy and Environment Efficiency of Chinese Cities: An Analysis Based on Range-Adjusted Measure," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1023-1042, July.
    18. Emrouznejad, Ali & Yang, Guo-liang, 2016. "A framework for measuring global Malmquist–Luenberger productivity index with CO2 emissions on Chinese manufacturing industries," Energy, Elsevier, vol. 115(P1), pages 840-856.
    19. Huan Li & Yehua Dennis Wei & Yuemin Ning, 2016. "Spatial and Temporal Evolution of Urban Systems in China during Rapid Urbanization," Sustainability, MDPI, vol. 8(7), pages 1-17, July.
    20. Haiqing Shuang & Weitao Meng & Yulong Zhai & Peng Xiao & Yu Shi & Yu Tian, 2022. "Application and Optimization of the Parameters of the High-Level Boreholes in Lateral High Drainage Roadway," Sustainability, MDPI, vol. 14(24), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:11:p:2153-:d:119978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.