IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i7p1085-d102312.html
   My bibliography  Save this article

Organizational Boundary Change in Industrial Symbiosis: Revisiting the Guitang Group in China

Author

Listed:
  • Lin Shi

    (School of Forestry and Environmental Studies, Yale University, 195 Prospect St, New Haven, CT 06511, USA)

  • Marian Chertow

    (School of Forestry and Environmental Studies, Yale University, 195 Prospect St, New Haven, CT 06511, USA)

Abstract

This study revisits the Guitang Group, one of the best known industrial symbiosis cases in the sugar industry. Our goal is to offer an evolutionary understanding of industrial symbiosis at the Guitang Group. This article focuses on the organizational boundary change of the Guitang Group over time, and acknowledges this process as one of the seven industrial symbiosis dynamics proposed by Boons et al. We offer a historical view of the critical forces behind Guitang’s industrial symbiosis evolution since the 1950s; particularly how these changes were influenced by broader economic and institutional contexts of importance in China. These insights include the role of institutionalized research and development (R&D) as well as technology-oriented leadership as driving forces for Guitang’s innovation, particularly since the 1990s, when greater efficiency and productivity were emphasized, leading to the establishment of further symbiotic relationships in the company’s evolutionary process. As a result, the Guitang Group grew from 2 internal to 11 internal and external symbiotic exchanges and is now a conglomeration with more than 3000 employees generating more than 1 billion RMB (150 million USD) in revenue annually. The driving forces of the Guitang Group’s industrial symbiosis evolution helped to create, disseminate and share information by continuously reinforcing the industrial symbiosis message as part of the Guitang Group’s business model and competitive strategy. In addition, state-level policies such as establishing the Guigang (the city where Guitang is located) Eco-Industrial Park enabled industrial symbiosis in Guitang. This study provides prospects for future research on the organizational boundary change dynamic of industrial symbiosis in the sugar manufacturing industry and beyond.

Suggested Citation

  • Lin Shi & Marian Chertow, 2017. "Organizational Boundary Change in Industrial Symbiosis: Revisiting the Guitang Group in China," Sustainability, MDPI, vol. 9(7), pages 1-19, June.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:7:p:1085-:d:102312
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/7/1085/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/7/1085/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elena Romero & M. Carmen Ruiz, 2013. "Framework for Applying a Complex Adaptive System Approach to Model the Operation of Eco‐Industrial Parks," Journal of Industrial Ecology, Yale University, vol. 17(5), pages 731-741, October.
    2. John Ehrenfeld & Nicholas Gertler, 1997. "Industrial Ecology in Practice: The Evolution of Interdependence at Kalundborg," Journal of Industrial Ecology, Yale University, vol. 1(1), pages 67-79, January.
    3. Qinghua ZHU & Ernest A. LOWE & Yuan‐an WEI & Donald BARNES, 2007. "Industrial Symbiosis in China: A Case Study of the Guitang Group," Journal of Industrial Ecology, Yale University, vol. 11(1), pages 31-42, January.
    4. World Bank, 2017. "World Development Indicators 2017," World Bank Publications - Books, The World Bank Group, number 26447.
    5. John L. Enos, 1962. "Invention and Innovation in the Petroleum Refining Industry," NBER Chapters, in: The Rate and Direction of Inventive Activity: Economic and Social Factors, pages 299-322, National Bureau of Economic Research, Inc.
    6. David Gibbs, 2003. "Trust and Networking in Inter-firm Relations: the Case of Eco-industrial Development," Local Economy, London South Bank University, vol. 18(3), pages 222-236, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John Rincón-Moreno & Marta Ormazabal & Maria J. Álvarez & Carmen Jaca, 2020. "Shortcomings of Transforming a Local Circular Economy System through Industrial Symbiosis: A Case Study in Spanish SMEs," Sustainability, MDPI, vol. 12(20), pages 1-18, October.
    2. Marian R. Chertow & Koichi S. Kanaoka & Jooyoung Park, 2021. "Tracking the diffusion of industrial symbiosis scholarship using bibliometrics: Comparing across Web of Science, Scopus, and Google Scholar," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 913-931, August.
    3. Angela Neves & Radu Godina & Susana G. Azevedo & João C. O. Matias, 2019. "Current Status, Emerging Challenges, and Future Prospects of Industrial Symbiosis in Portugal," Sustainability, MDPI, vol. 11(19), pages 1-23, October.
    4. Giselle Rentería Núñez & David Perez-Castillo, 2023. "Business Models for Industrial Symbiosis: A Literature Review," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    5. Hua Cui & Changhao Liu & Raymond Côté & Weifeng Liu, 2018. "Understanding the Evolution of Industrial Symbiosis with a System Dynamics Model: A Case Study of Hai Hua Industrial Symbiosis, China," Sustainability, MDPI, vol. 10(11), pages 1-25, October.
    6. Juan Henriques & Paulo Ferrão & Rui Castro & João Azevedo, 2021. "Industrial Symbiosis: A Sectoral Analysis on Enablers and Barriers," Sustainability, MDPI, vol. 13(4), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Liang & Liang, Hanwei & Zhang, Liguo & Liu, Zhaowen & Gao, Zhiqiu & Hu, Mingming, 2017. "Highlighting regional eco-industrial development: Life cycle benefits of an urban industrial symbiosis and implications in China," Ecological Modelling, Elsevier, vol. 361(C), pages 164-176.
    2. Luca Fraccascia & Ilaria Giannoccaro & Vito Albino, 2017. "Efficacy of Landfill Tax and Subsidy Policies for the Emergence of Industrial Symbiosis Networks: An Agent-Based Simulation Study," Sustainability, MDPI, vol. 9(4), pages 1-18, March.
    3. Aid, Graham & Eklund, Mats & Anderberg, Stefan & Baas, Leenard, 2017. "Expanding roles for the Swedish waste management sector in inter-organizational resource management," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 85-97.
    4. Liu, Changhao & Zhang, Kai, 2013. "Industrial ecology and water utilization of the marine chemical industry: A case study of Hai Hua Group (HHG), China," Resources, Conservation & Recycling, Elsevier, vol. 70(C), pages 78-85.
    5. Biljana Mileva-Boshkoska & Borut Rončević & Erika Džajić Uršič, 2018. "Modeling and Evaluation of the Possibilities of Forming a Regional Industrial Symbiosis Networks," Social Sciences, MDPI, vol. 7(1), pages 1-26, January.
    6. Marian R. Chertow & Koichi S. Kanaoka & Jooyoung Park, 2021. "Tracking the diffusion of industrial symbiosis scholarship using bibliometrics: Comparing across Web of Science, Scopus, and Google Scholar," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 913-931, August.
    7. Sara Tessitore & Tiberio Daddi & Fabio Iraldo, 2015. "Eco-Industrial Parks Development and Integrated Management Challenges: Findings from Italy," Sustainability, MDPI, vol. 7(8), pages 1-16, July.
    8. Hua Cui & Changhao Liu & Raymond Côté & Weifeng Liu, 2018. "Understanding the Evolution of Industrial Symbiosis with a System Dynamics Model: A Case Study of Hai Hua Industrial Symbiosis, China," Sustainability, MDPI, vol. 10(11), pages 1-25, October.
    9. Kaifang Zheng & Suling Jia, 2017. "Promoting the Opportunity Identification of Industrial Symbiosis: Agent-Based Modeling Inspired by Innovation Diffusion Theory," Sustainability, MDPI, vol. 9(5), pages 1-24, May.
    10. Raffaella Taddeo & Alberto Simboli & Giuseppe Ioppolo & Anna Morgante, 2017. "Industrial Symbiosis, Networking and Innovation: The Potential Role of Innovation Poles," Sustainability, MDPI, vol. 9(2), pages 1-17, January.
    11. Jooyoung Park & Juanita Duque-Hernández & Nohora Díaz-Posada, 2018. "Facilitating Business Collaborations for Industrial Symbiosis: The Pilot Experience of the Sustainable Industrial Network Program in Colombia," Sustainability, MDPI, vol. 10(10), pages 1-17, October.
    12. Carmen Ruiz-Puente, 2021. "Proposal of a Conceptual Model to Represent Urban-Industrial Systems from the Analysis of Existing Worldwide Experiences," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    13. Shimaa Al-Quradaghi & Qipeng P. Zheng & Ali Elkamel, 2020. "Generalized Framework for the Design of Eco-Industrial Parks: Case Study of End-of-Life Vehicles," Sustainability, MDPI, vol. 12(16), pages 1-17, August.
    14. Nadia Akhtar & Syed Atif Bokhari & Michael Alan Martin & Zafeer Saqib & Muhammad Irfan Khan & Arif Mahmud & Muhammad Zaman-ul-Haq & Sarah Amir, 2022. "Uncovering Barriers for Industrial Symbiosis: Assessing Prospects for Eco-Industrialization through Small and Medium-Sized Enterprises in Developing Regions," Sustainability, MDPI, vol. 14(11), pages 1-21, June.
    15. Dong, Liang & Gu, Fumei & Fujita, Tsuyoshi & Hayashi, Yoshitsugu & Gao, Jie, 2014. "Uncovering opportunity of low-carbon city promotion with industrial system innovation: Case study on industrial symbiosis projects in China," Energy Policy, Elsevier, vol. 65(C), pages 388-397.
    16. Brausmann, Alexandra & Bretschger, Lucas, 2018. "Economic development on a finite planet with stochastic soil degradation," European Economic Review, Elsevier, vol. 108(C), pages 1-19.
    17. Johnny Flentø, 2021. "Ending Poverty in All its Forms Everywhere," DERG working paper series 21-13, University of Copenhagen. Department of Economics. Development Economics Research Group (DERG).
    18. Boukraine, Wissem, 2020. "The finance-inequality nexus in the BRICS countries: evidence from an ARDL bound testing approach," MPRA Paper 101976, University Library of Munich, Germany.
    19. Paul Welfens & Jens Perret & Deniz Erdem, 2010. "Global economic sustainability indicator: analysis and policy options for the Copenhagen process," International Economics and Economic Policy, Springer, vol. 7(2), pages 153-185, August.
    20. Kym Anderson & Kimie Harada, 2019. "How Much Wine Is Really Produced and Consumed in China, Hong Kong, and Japan?," World Scientific Book Chapters, in: Kym Anderson (ed.), The International Economics of Wine, chapter 15, pages 379-404, World Scientific Publishing Co. Pte. Ltd..

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:7:p:1085-:d:102312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.