IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v70y2013icp78-85.html
   My bibliography  Save this article

Industrial ecology and water utilization of the marine chemical industry: A case study of Hai Hua Group (HHG), China

Author

Listed:
  • Liu, Changhao
  • Zhang, Kai

Abstract

The marine chemical industry is a chemical industry based on coastal advantage. The Chinese government attaches great importance to the marine industry and made it the focal point of China economy in the 12th five-year plan. Water is an important material for the marine chemical industry, but wastewater discharge could undermine the sustainable development of the marine chemical industry. Industrial ecology provides insights for industry to realize a harmonious development with the environment. This paper examined the case of water utilization practice based on industrial ecology of the Hai Hua Group (HHG) in China. The utilization of three kinds of water, i.e., underground brine, seawater and freshwater is characteristic of the industrial ecology implementation of the HHG. In this paper, the water utilization practice of the HHG was described. The relationships among the three kinds of water, the driving force of water utilization, and the challenges of water utilization in the HHG were discussed. We conclude that implementing industrial ecology is a promising choice for the water utilization of marine chemical industry. It could also achieve the coordinated development between sea farming and the marine chemical industry. For non-renewable resource driven regional industrial ecosystems, such as the Hai Hua industrial ecosystem (HHIE) in this paper, seeking a substitute approach is essential for the stable and sustainable development of the whole industrial ecosystem. We also conclude that an industrial ecosystem's operation is driven by the integration of many factors, such as government, market, policy, culture and technique in this paper. This requires us to examine an industrial ecosystem's operation from a wider perspective, which is helpful to comprehensively and systematically understand the impetus of an industrial ecosystem.

Suggested Citation

  • Liu, Changhao & Zhang, Kai, 2013. "Industrial ecology and water utilization of the marine chemical industry: A case study of Hai Hua Group (HHG), China," Resources, Conservation & Recycling, Elsevier, vol. 70(C), pages 78-85.
  • Handle: RePEc:eee:recore:v:70:y:2013:i:c:p:78-85
    DOI: 10.1016/j.resconrec.2012.09.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344912001723
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2012.09.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Ehrenfeld & Nicholas Gertler, 1997. "Industrial Ecology in Practice: The Evolution of Interdependence at Kalundborg," Journal of Industrial Ecology, Yale University, vol. 1(1), pages 67-79, January.
    2. Qinghua ZHU & Ernest A. LOWE & Yuan‐an WEI & Donald BARNES, 2007. "Industrial Symbiosis in China: A Case Study of the Guitang Group," Journal of Industrial Ecology, Yale University, vol. 11(1), pages 31-42, January.
    3. Yang, Shanlin & Feng, Nanping, 2008. "A case study of industrial symbiosis: Nanning Sugar Co., Ltd. in China," Resources, Conservation & Recycling, Elsevier, vol. 52(5), pages 813-820.
    4. Yong Geng & Murray Haight & Qinghua Zhu, 2007. "Empirical analysis of eco-industrial development in China," Sustainable Development, John Wiley & Sons, Ltd., vol. 15(2), pages 121-133.
    5. Noel Brings Jacobsen, 2006. "Industrial Symbiosis in Kalundborg, Denmark: A Quantitative Assessment of Economic and Environmental Aspects," Journal of Industrial Ecology, Yale University, vol. 10(1‐2), pages 239-255, January.
    6. Korhonen, Jouni & Snakin, Juha-Pekka, 2005. "Analysing the evolution of industrial ecosystems: concepts and application," Ecological Economics, Elsevier, vol. 52(2), pages 169-186, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kwon, Gui-Rok & Woo, Seung H. & Lim, Seong-Rin, 2015. "Industrial ecology-based strategies to reduce the embodied CO2 of magnesium metal," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 206-212.
    2. Li, Xuemei & Wu, Xinran & Zhao, Yufeng, 2023. "Research and application of multi-variable grey optimization model with interactive effects in marine emerging industries prediction," Technological Forecasting and Social Change, Elsevier, vol. 187(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Liang & Liang, Hanwei & Zhang, Liguo & Liu, Zhaowen & Gao, Zhiqiu & Hu, Mingming, 2017. "Highlighting regional eco-industrial development: Life cycle benefits of an urban industrial symbiosis and implications in China," Ecological Modelling, Elsevier, vol. 361(C), pages 164-176.
    2. Luca Fraccascia & Ilaria Giannoccaro & Vito Albino, 2017. "Efficacy of Landfill Tax and Subsidy Policies for the Emergence of Industrial Symbiosis Networks: An Agent-Based Simulation Study," Sustainability, MDPI, vol. 9(4), pages 1-18, March.
    3. Sara Tessitore & Tiberio Daddi & Fabio Iraldo, 2015. "Eco-Industrial Parks Development and Integrated Management Challenges: Findings from Italy," Sustainability, MDPI, vol. 7(8), pages 1-16, July.
    4. Hua Cui & Changhao Liu & Raymond Côté & Weifeng Liu, 2018. "Understanding the Evolution of Industrial Symbiosis with a System Dynamics Model: A Case Study of Hai Hua Industrial Symbiosis, China," Sustainability, MDPI, vol. 10(11), pages 1-25, October.
    5. Pakarinen, Suvi & Mattila, Tuomas & Melanen, Matti & Nissinen, Ari & Sokka, Laura, 2010. "Sustainability and industrial symbiosis—The evolution of a Finnish forest industry complex," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1393-1404.
    6. Anna Lütje & Volker Wohlgemuth, 2020. "Requirements Engineering for an Industrial Symbiosis Tool for Industrial Parks Covering System Analysis, Transformation Simulation and Goal Setting," Administrative Sciences, MDPI, vol. 10(1), pages 1-24, February.
    7. Dong, Liang & Gu, Fumei & Fujita, Tsuyoshi & Hayashi, Yoshitsugu & Gao, Jie, 2014. "Uncovering opportunity of low-carbon city promotion with industrial system innovation: Case study on industrial symbiosis projects in China," Energy Policy, Elsevier, vol. 65(C), pages 388-397.
    8. Colton Brehm & Astrid Layton, 2021. "Nestedness of eco‐industrial networks: Exploring linkage distribution to promote sustainable industrial growth," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 205-218, February.
    9. Carlos Scheel & Bernardo Bello, 2022. "Transforming Linear Production Chains into Circular Value Extended Systems," Sustainability, MDPI, vol. 14(7), pages 1-17, March.
    10. Chembessi Chedrak & Gohoungodji Paulin & Juste Rajaonson, 2023. "“A fine wine, better with age”: Circular economy historical roots and influential publications: A bibliometric analysis using Reference Publication Year Spectroscopy (RPYS)," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1593-1612, December.
    11. Anna Rohde-Lütje & Volker Wohlgemuth, 2020. "Recurring Patterns and Blueprints of Industrial Symbioses as Structural Units for an IT Tool," Sustainability, MDPI, vol. 12(19), pages 1-21, October.
    12. Mina Nasiri & Tero Rantala & Minna Saunila & Juhani Ukko & Hannu Rantanen, 2018. "Transition towards Sustainable Solutions: Product, Service, Technology, and Business Model," Sustainability, MDPI, vol. 10(2), pages 1-18, January.
    13. Jarmo Uusikartano & Hannele Väyrynen & Leena Aarikka-Stenroos, 2020. "Public Agency in Changing Industrial Circular Economy Ecosystems: Roles, Modes and Structures," Sustainability, MDPI, vol. 12(23), pages 1-27, November.
    14. Florian Lüdeke‐Freund & Stefan Gold & Nancy M. P. Bocken, 2019. "A Review and Typology of Circular Economy Business Model Patterns," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 36-61, February.
    15. Fraccascia, Luca & Giannoccaro, Ilaria & Albino, Vito, 2017. "Rethinking Resilience in Industrial Symbiosis: Conceptualization and Measurements," Ecological Economics, Elsevier, vol. 137(C), pages 148-162.
    16. Andreas Makoto Hein & Marija Jankovic & Romain Farel & Lei I Sam & Bernard Yannou, 2015. "Modeling Industrial Symbiosis Using Design Structure Matrices," Post-Print hal-01270870, HAL.
    17. Juan Diego Henriques & João Azevedo & Rui Dias & Marco Estrela & Cristina Ascenço & Doroteya Vladimirova & Karen Miller, 2022. "Implementing Industrial Symbiosis Incentives: an Applied Assessment Framework for Risk Mitigation," Circular Economy and Sustainability, Springer, vol. 2(2), pages 669-692, June.
    18. Rachelle LeBlanc & Carole Tranchant & Yves Gagnon & Raymond Côté, 2016. "Potential for Eco-Industrial Park Development in Moncton, New Brunswick (Canada): A Comparative Analysis," Sustainability, MDPI, vol. 8(5), pages 1-18, May.
    19. Miguel A. Artacho-Ramírez & Bélgica Pacheco-Blanco & Víctor A. Cloquell-Ballester & Mónica Vicent & Irina Celades, 2020. "Quick Wins Workshop and Companies Profiling to Analyze Industrial Symbiosis Potential. Valenciaport’s Cluster as Case Study," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    20. Zhang, Yan & Zheng, Hongmei & Fath, Brian D., 2015. "Ecological network analysis of an industrial symbiosis system: A case study of the Shandong Lubei eco-industrial park," Ecological Modelling, Elsevier, vol. 306(C), pages 174-184.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:70:y:2013:i:c:p:78-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.