IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i2p272-d90404.html
   My bibliography  Save this article

Passive House and Low Energy Buildings: Barriers and Opportunities for Future Development within UK Practice

Author

Listed:
  • Adrian Pitts

    (Centre for Urban Design, Architecture and Sustainability, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK)

Abstract

This paper describes research carried out to understand better the current and future emphases emerging from practice for the design and development of “Passive House” and low energy buildings. The paper initially discusses the extant position, particularly with regards to the UK and considers how regulation and assessment systems have changed in recent years, as well as projecting ideas forward taking account of contemporary political situations. Relevant previous research into Passive House and low energy design and construction is then reviewed. The need for greater understanding of professionals and their communication/collaboration with clients were identified as important factors impacting development. Those involved in the design and construction practice therefore have key roles in the process of enhancing energy efficiency. Five industry/practice based professional organizations were interviewed in-depth to gain insights into their experience of current low energy design, and to extrapolate the outcomes to future scenarios. The method employed used a structured interview technique with key question areas to lead the discussion. The anonymized responses discussed are grouped around key themes. Evidence suggests there has been a move towards the adoption of voluntary high level standards because of potential limitations with mandatory regulations and because of perceived additional benefits of higher quality design. This change is now more than previously, being driven by informed clients, design professionals, and the industry, with regulation taking a secondary role. New opportunities and barriers are becoming evident and these require further consideration.

Suggested Citation

  • Adrian Pitts, 2017. "Passive House and Low Energy Buildings: Barriers and Opportunities for Future Development within UK Practice," Sustainability, MDPI, vol. 9(2), pages 1-26, February.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:2:p:272-:d:90404
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/2/272/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/2/272/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Neil Burford & Rod Jones & Stephen Reynolds & David Rodley, 2016. "Macro Micro Studio: A Prototype Energy Autonomous Laboratory," Sustainability, MDPI, vol. 8(6), pages 1-25, May.
    2. David Johnston & Mark Siddall, 2016. "The Building Fabric Thermal Performance of Passivhaus Dwellings—Does It Do What It Says on the Tin?," Sustainability, MDPI, vol. 8(1), pages 1-14, January.
    3. Schnieders, Jurgen & Hermelink, Andreas, 2006. "CEPHEUS results: measurements and occupants' satisfaction provide evidence for Passive Houses being an option for sustainable building," Energy Policy, Elsevier, vol. 34(2), pages 151-171, January.
    4. Jizhong Shao & Huixian Chen & Ting Zhu, 2016. "Solar Energy Block-Based Residential Construction for Rural Areas in the West of China," Sustainability, MDPI, vol. 8(4), pages 1-21, April.
    5. McLeod, Robert S. & Hopfe, Christina J. & Rezgui, Yacine, 2012. "An investigation into recent proposals for a revised definition of zero carbon homes in the UK," Energy Policy, Elsevier, vol. 46(C), pages 25-35.
    6. Mlecnik, Erwin & Visscher, Henk & van Hal, Anke, 2010. "Barriers and opportunities for labels for highly energy-efficient houses," Energy Policy, Elsevier, vol. 38(8), pages 4592-4603, August.
    7. Rodríguez-Soria, Beatriz & Domínguez-Hernández, Javier & Pérez-Bella, José M. & del Coz-Díaz, Juan J., 2014. "Review of international regulations governing the thermal insulation requirements of residential buildings and the harmonization of envelope energy loss," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 78-90.
    8. Jolanta Šadauskienė & Juozas Ramanauskas & Lina Šeduikytė & Mindaugas Daukšys & Algimantas Vasylius, 2015. "A Simplified Methodology for Evaluating the Impact of Point Thermal Bridges on the High-Energy Performance of a Passive House," Sustainability, MDPI, vol. 7(12), pages 1-16, December.
    9. May Khalfan & Steve Sharples, 2016. "The Present and Future Energy Performance of the First Passivhaus Project in the Gulf Region," Sustainability, MDPI, vol. 8(2), pages 1-17, February.
    10. Dowson, Mark & Poole, Adam & Harrison, David & Susman, Gideon, 2012. "Domestic UK retrofit challenge: Barriers, incentives and current performance leading into the Green Deal," Energy Policy, Elsevier, vol. 50(C), pages 294-305.
    11. Halil Alibaba, 2016. "Determination of Optimum Window to External Wall Ratio for Offices in a Hot and Humid Climate," Sustainability, MDPI, vol. 8(2), pages 1-21, February.
    12. Ionescu, Constantin & Baracu, Tudor & Vlad, Gabriela-Elena & Necula, Horia & Badea, Adrian, 2015. "The historical evolution of the energy efficient buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 243-253.
    13. Audenaert, A. & De Cleyn, S.H. & Vankerckhove, B., 2008. "Economic analysis of passive houses and low-energy houses compared with standard houses," Energy Policy, Elsevier, vol. 36(1), pages 47-55, January.
    14. Janice Foster & Tim Sharpe & Anna Poston & Chris Morgan & Filbert Musau, 2016. "Scottish Passive House: Insights into Environmental Conditions in Monitored Passive Houses," Sustainability, MDPI, vol. 8(5), pages 1-24, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Genovese, P.V. & Zoure, A.N., 2023. "Architecture trends and challenges in sub-Saharan Africa's construction industry: A theoretical guideline of a bioclimatic architecture evolution based on the multi-scale approach and circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    2. Joohyun Lee & Mardelle McCuskey Shepley & Jungmann Choi, 2021. "Analysis of Professionals’ and the General Public’s Perceptions of Passive Houses in Korea: Needs Assessment for the Improvement of the Energy Efficiency and Indoor Environmental Quality," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    3. Ramy Mahmoud & John M. Kamara & Neil Burford, 2020. "Opportunities and Limitations of Building Energy Performance Simulation Tools in the Early Stages of Building Design in the UK," Sustainability, MDPI, vol. 12(22), pages 1-29, November.
    4. Lily Warren & Ayotunde Dawodu & Ayomikun Solomon Adewumi & Cheng Quan, 2024. "Can the UK Deliver Zero Carbon Ready Homes by 2050?," Sustainability, MDPI, vol. 16(13), pages 1-25, July.
    5. Pablo Jimenez-Moreno, 2021. "Mass Customisation for Zero-Energy Housing," Sustainability, MDPI, vol. 13(10), pages 1-24, May.
    6. Sonja Oliveira & Elena Marco, 2018. "Role of ‘Community Spaces’ in Residents’ Adaptation to Energy-Efficient Heating Technologies—Insights from a UK Low-Energy Housing Development," Sustainability, MDPI, vol. 10(4), pages 1-15, March.
    7. Rongrong Yu & Ning Gu & Michael J. Ostwald, 2022. "Architects’ Perceptions about Sustainable Design Practice and the Support Provided for This by Digital Tools: A Study in Australia," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    8. Ahsan Waqar & Idris Othman & Nasir Shafiq & Hasim Altan & Bertug Ozarisoy, 2023. "Modeling the Effect of Overcoming the Barriers to Passive Design Implementation on Project Sustainability Building Success: A Structural Equation Modeling Perspective," Sustainability, MDPI, vol. 15(11), pages 1-26, June.
    9. Maria-Mar Fernandez-Antolin & José Manuel del Río & Vincenzo Costanzo & Francesco Nocera & Roberto-Alonso Gonzalez-Lezcano, 2019. "Passive Design Strategies for Residential Buildings in Different Spanish Climate Zones," Sustainability, MDPI, vol. 11(18), pages 1-22, September.
    10. Jisoo Shim & Doosam Song & Joowook Kim, 2018. "The Economic Feasibility of Passive Houses in Korea," Sustainability, MDPI, vol. 10(10), pages 1-16, October.
    11. Liu, Li & Yu, Deng, 2023. "Does volatility in natural resources commodity prices and economic performance matter for RCEP economies?," Resources Policy, Elsevier, vol. 80(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Forde, Joe & Hopfe, Christina J. & McLeod, Robert S. & Evins, Ralph, 2020. "Temporal optimization for affordable and resilient Passivhaus dwellings in the social housing sector," Applied Energy, Elsevier, vol. 261(C).
    2. Víctor Echarri-Iribarren & Cristina Sotos-Solano & Almudena Espinosa-Fernández & Raúl Prado-Govea, 2019. "The Passivhaus Standard in the Spanish Mediterranean: Evaluation of a House’s Thermal Behaviour of Enclosures and Airtightness," Sustainability, MDPI, vol. 11(13), pages 1-25, July.
    3. Aydin, Yusuf Cihat & Mirzaei, Parham A. & Akhavannasab, Sanam, 2019. "On the relationship between building energy efficiency, aesthetic features and marketability: Toward a novel policy for energy demand reduction," Energy Policy, Elsevier, vol. 128(C), pages 593-606.
    4. Kylili, Angeliki & Ilic, Milos & Fokaides, Paris A., 2017. "Whole-building Life Cycle Assessment (LCA) of a passive house of the sub-tropical climatic zone," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 169-177.
    5. Georges, L. & Massart, C. & Van Moeseke, G. & De Herde, A., 2012. "Environmental and economic performance of heating systems for energy-efficient dwellings: Case of passive and low-energy single-family houses," Energy Policy, Elsevier, vol. 40(C), pages 452-464.
    6. Soršak, Marko & Leskovar, Vesna Žegarac & Premrov, Miroslav & Goričanec, Darko & Pšunder, Igor, 2014. "Economical optimization of energy-efficient timber buildings: Case study for single family timber house in Slovenia," Energy, Elsevier, vol. 77(C), pages 57-65.
    7. Krzysztof Grygierek & Joanna Ferdyn-Grygierek & Anna Gumińska & Łukasz Baran & Magdalena Barwa & Kamila Czerw & Paulina Gowik & Klaudia Makselan & Klaudia Potyka & Agnes Psikuta, 2020. "Energy and Environmental Analysis of Single-Family Houses Located in Poland," Energies, MDPI, vol. 13(11), pages 1-25, May.
    8. Jisoo Shim & Doosam Song & Joowook Kim, 2018. "The Economic Feasibility of Passive Houses in Korea," Sustainability, MDPI, vol. 10(10), pages 1-16, October.
    9. Timmons, David & Konstantinidis, Charalampos & Shapiro, Andrew M. & Wilson, Alex, 2016. "Decarbonizing residential building energy: A cost-effective approach," Energy Policy, Elsevier, vol. 92(C), pages 382-392.
    10. Aleksandra Siudek & Anna M. Klepacka & Wojciech J. Florkowski & Piotr Gradziuk, 2020. "Renewable Energy Utilization in Rural Residential Housing: Economic and Environmental Facets," Energies, MDPI, vol. 13(24), pages 1-18, December.
    11. Wang, Yang & Kuckelkorn, Jens & Zhao, Fu-Yun & Spliethoff, Hartmut & Lang, Werner, 2017. "A state of art of review on interactions between energy performance and indoor environment quality in Passive House buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1303-1319.
    12. Camilo Bravo-Orlandini & José M. Gómez-Soberón & Claudia Valderrama-Ulloa & Francisco Sanhueza-Durán, 2021. "Energy, Economic, and Environmental Performance of a Single-Family House in Chile Built to Passivhaus Standard," Sustainability, MDPI, vol. 13(3), pages 1-15, January.
    13. Berry, Stephen & Davidson, Kathryn, 2016. "Improving the economics of building energy code change: A review of the inputs and assumptions of economic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 157-166.
    14. Balcombe, Paul & Rigby, Dan & Azapagic, Adisa, 2014. "Investigating the importance of motivations and barriers related to microgeneration uptake in the UK," Applied Energy, Elsevier, vol. 130(C), pages 403-418.
    15. Barry Mc Carron & Xianhai Meng & Shane Colclough, 2020. "An Investigation into Indoor Radon Concentrations in Certified Passive House Homes," IJERPH, MDPI, vol. 17(11), pages 1-13, June.
    16. Heffernan, Emma & Pan, Wei & Liang, Xi & de Wilde, Pieter, 2015. "Zero carbon homes: Perceptions from the UK construction industry," Energy Policy, Elsevier, vol. 79(C), pages 23-36.
    17. Wang, Yang & Du, Jiangtao & Kuckelkorn, Jens M. & Kirschbaum, Alexander & Gu, Xin & Li, Daoliang, 2019. "Identifying the feasibility of establishing a passive house school in central Europe: An energy performance and carbon emissions monitoring study in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    18. Saari, Arto & Kalamees, Targo & Jokisalo, Juha & Michelsson, Rasmus & Alanne, Kari & Kurnitski, Jarek, 2012. "Financial viability of energy-efficiency measures in a new detached house design in Finland," Applied Energy, Elsevier, vol. 92(C), pages 76-83.
    19. Bardsley, Nicholas & Büchs, Milena & James, Patrick & Papafragkou, Anastasios & Rushby, Thomas & Saunders, Clare & Smith, Graham & Wallbridge, Rebecca & Woodman, Nicholas, 2019. "Domestic thermal upgrades, community action and energy saving: A three-year experimental study of prosperous households," Energy Policy, Elsevier, vol. 127(C), pages 475-485.
    20. O’Keeffe, Juliette M. & Gilmour, Daniel & Simpson, Edward, 2016. "A network approach to overcoming barriers to market engagement for SMEs in energy efficiency initiatives such as the Green Deal," Energy Policy, Elsevier, vol. 97(C), pages 582-590.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:2:p:272-:d:90404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.