IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v51y2015icp300-311.html
   My bibliography  Save this article

Linear and nonlinear Granger causality investigation between carbon market and crude oil market: A multi-scale approach

Author

Listed:
  • Yu, Lean
  • Li, Jingjing
  • Tang, Ling
  • Wang, Shuai

Abstract

This paper investigates the causality between carbon market and crude oil market using a multi-scale analysis approach, in which two main steps are involved: multi-scale analysis and causality testing. In multi-scale analysis, bivariate empirical mode decomposition (BEMD) is employed to decompose the two series of market returns at different time-scales. In causality testing, a linear and nonlinear integrated Granger test is formulated to investigate the relationship among each pair of matched components on a similar time-scale. With the European Union emission allowance (EUA) futures and Brent futures as study samples, some interesting findings can be obtained. (1) At the original data level (without multi-scale decomposition), this study finds evidence supporting a neutrality hypothesis, i.e., no Granger causality between the carbon and crude oil markets. (2) On small time-scale (within one week excluding non-work days), the two markets might be uncorrelated and driven by their own respective supply–demand disequilibriums. (3) For medium time-scale (above one week but below one year), there is a strong bi-directional linear and nonlinear spillover effect between the two markets, due to certain extra factors with medium-term effects, e.g., significant events and policy changes. (4) For long time-scale, the long-term trends of the two markets appear an obvious linear relationship.

Suggested Citation

  • Yu, Lean & Li, Jingjing & Tang, Ling & Wang, Shuai, 2015. "Linear and nonlinear Granger causality investigation between carbon market and crude oil market: A multi-scale approach," Energy Economics, Elsevier, vol. 51(C), pages 300-311.
  • Handle: RePEc:eee:eneeco:v:51:y:2015:i:c:p:300-311
    DOI: 10.1016/j.eneco.2015.07.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S014098831500211X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2015.07.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cifter, Atilla & Ozun, Alper, 2007. "Multi-scale Causality between Energy Consumption and GNP in Emerging Markets: Evidence from Turkey," MPRA Paper 2483, University Library of Munich, Germany.
    2. Zhang, Xun & Lai, K.K. & Wang, Shou-Yang, 2008. "A new approach for crude oil price analysis based on Empirical Mode Decomposition," Energy Economics, Elsevier, vol. 30(3), pages 905-918, May.
    3. Hammoudeh, Shawkat & Lahiani, Amine & Nguyen, Duc Khuong & Sousa, Ricardo M., 2015. "An empirical analysis of energy cost pass-through to CO2 emission prices," Energy Economics, Elsevier, vol. 49(C), pages 149-156.
    4. He, Kaijian & Yu, Lean & Lai, Kin Keung, 2012. "Crude oil price analysis and forecasting using wavelet decomposed ensemble model," Energy, Elsevier, vol. 46(1), pages 564-574.
    5. Aatola, Piia & Ollikainen, Markku & Toppinen, Anne, 2013. "Price determination in the EU ETS market: Theory and econometric analysis with market fundamentals," Energy Economics, Elsevier, vol. 36(C), pages 380-395.
    6. Zhuang, Xiaoyang & Wei, Yu & Zhang, Bangzheng, 2014. "Multifractal detrended cross-correlation analysis of carbon and crude oil markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 113-125.
    7. Chevallier, Julien, 2009. "Carbon futures and macroeconomic risk factors: A view from the EU ETS," Energy Economics, Elsevier, vol. 31(4), pages 614-625, July.
    8. Creti, Anna & Jouvet, Pierre-André & Mignon, Valérie, 2012. "Carbon price drivers: Phase I versus Phase II equilibrium?," Energy Economics, Elsevier, vol. 34(1), pages 327-334.
    9. Mansanet-Bataller, Maria & Chevallier, Julien & Hervé-Mignucci, Morgan & Alberola, Emilie, 2011. "EUA and sCER phase II price drivers: Unveiling the reasons for the existence of the EUA-sCER spread," Energy Policy, Elsevier, vol. 39(3), pages 1056-1069, March.
    10. Yuying Yang & Chang Liu & Xiaolei Sun & Jianping Li, 2015. "Spillover effect of international crude oil market on tanker market," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 38(4/5/6), pages 257-277.
    11. Diks, Cees & Panchenko, Valentyn, 2006. "A new statistic and practical guidelines for nonparametric Granger causality testing," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1647-1669.
    12. Bangzhu Zhu & Ping Wang & Julien Chevallier & Yiming Wei, 2015. "Carbon Price Analysis Using Empirical Mode Decomposition," Computational Economics, Springer;Society for Computational Economics, vol. 45(2), pages 195-206, February.
    13. Massimo Peri & Lucia Baldi, 2011. "Nonlinear price dynamics between CO2 futures and Brent," Applied Economics Letters, Taylor & Francis Journals, vol. 18(13), pages 1207-1211.
    14. Bredin, Don & Muckley, Cal, 2011. "An emerging equilibrium in the EU emissions trading scheme," Energy Economics, Elsevier, vol. 33(2), pages 353-362, March.
    15. Reboredo, Juan C., 2013. "Modeling EU allowances and oil market interdependence. Implications for portfolio management," Energy Economics, Elsevier, vol. 36(C), pages 471-480.
    16. Hiemstra, Craig & Jones, Jonathan D, 1994. "Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation," Journal of Finance, American Finance Association, vol. 49(5), pages 1639-1664, December.
    17. Bangzhu Zhu, 2012. "A Novel Multiscale Ensemble Carbon Price Prediction Model Integrating Empirical Mode Decomposition, Genetic Algorithm and Artificial Neural Network," Energies, MDPI, vol. 5(2), pages 1-16, February.
    18. Zhang, Dayong, 2008. "Oil shock and economic growth in Japan: A nonlinear approach," Energy Economics, Elsevier, vol. 30(5), pages 2374-2390, September.
    19. repec:dau:papers:123456789/4222 is not listed on IDEAS
    20. Yu, Lean & Zhao, Yang & Tang, Ling, 2014. "A compressed sensing based AI learning paradigm for crude oil price forecasting," Energy Economics, Elsevier, vol. 46(C), pages 236-245.
    21. Reboredo, Juan C., 2014. "Volatility spillovers between the oil market and the European Union carbon emission market," Economic Modelling, Elsevier, vol. 36(C), pages 229-234.
    22. Chiou-Wei, Song Zan & Chen, Ching-Fu & Zhu, Zhen, 2008. "Economic growth and energy consumption revisited -- Evidence from linear and nonlinear Granger causality," Energy Economics, Elsevier, vol. 30(6), pages 3063-3076, November.
    23. Benhmad, François, 2013. "Dynamic cyclical comovements between oil prices and US GDP: A wavelet perspective," Energy Policy, Elsevier, vol. 57(C), pages 141-151.
    24. repec:dau:papers:123456789/4210 is not listed on IDEAS
    25. Bekiros, Stelios D. & Diks, Cees G.H., 2008. "The relationship between crude oil spot and futures prices: Cointegration, linear and nonlinear causality," Energy Economics, Elsevier, vol. 30(5), pages 2673-2685, September.
    26. Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
    27. Alberola, Emilie & Chevallier, Julien & Cheze, Benoi^t, 2008. "Price drivers and structural breaks in European carbon prices 2005-2007," Energy Policy, Elsevier, vol. 36(2), pages 787-797, February.
    28. Liu, Hsiang-Hsi & Chen, Yi-Chun, 2013. "A study on the volatility spillovers, long memory effects and interactions between carbon and energy markets: The impacts of extreme weather," Economic Modelling, Elsevier, vol. 35(C), pages 840-855.
    29. Benhmad, François, 2012. "Modeling nonlinear Granger causality between the oil price and U.S. dollar: A wavelet based approach," Economic Modelling, Elsevier, vol. 29(4), pages 1505-1514.
    30. Maria Mansanet-Bataller & Angel Pardo & Enric Valor, 2007. "CO2 Prices, Energy and Weather," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 73-92.
    31. repec:dau:papers:123456789/5109 is not listed on IDEAS
    32. François Benhmad, 2012. "Modeling Nonlinear Granger Causality between the Oil price and U.S Dollar," Post-Print hal-03062497, HAL.
    33. Reboredo, Juan C. & Ugando, Mikel, 2015. "Downside risks in EU carbon and fossil fuel markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 111(C), pages 17-35.
    34. Lean Yu & Jingjing Li & Ling Tang, 2015. "Dynamic volatility spillover effect analysis between carbon market and crude oil market: a DCC-ICSS approach," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 38(4/5/6), pages 242-256.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Kun & Ren, Xiaohang & Shi, Yukun & Mishra, Tapas & Yan, Cheng, 2021. "The marginal impacts of energy prices on carbon price variations: Evidence from a quantile-on-quantile approach," Energy Economics, Elsevier, vol. 95(C).
    2. Ren, Xiaohang & Li, Yiying & Qi, Yinshu & Duan, Kun, 2022. "Asymmetric effects of decomposed oil-price shocks on the EU carbon market dynamics," Energy, Elsevier, vol. 254(PB).
    3. Dai, Xingyu & Xiao, Ling & Wang, Qunwei & Dhesi, Gurjeet, 2021. "Multiscale interplay of higher-order moments between the carbon and energy markets during Phase III of the EU ETS," Energy Policy, Elsevier, vol. 156(C).
    4. Wen, Xiaoqian & Bouri, Elie & Roubaud, David, 2017. "Can energy commodity futures add to the value of carbon assets?," Economic Modelling, Elsevier, vol. 62(C), pages 194-206.
    5. Demiralay, Sercan & Gencer, Hatice Gaye & Bayraci, Selcuk, 2022. "Carbon credit futures as an emerging asset: Hedging, diversification and downside risks," Energy Economics, Elsevier, vol. 113(C).
    6. Zhu, Bangzhu & Han, Dong & Chevallier, Julien & Wei, Yi-Ming, 2017. "Dynamic multiscale interactions between European carbon and electricity markets during 2005–2016," Energy Policy, Elsevier, vol. 107(C), pages 309-322.
    7. Zhu, Bangzhu & Ye, Shunxin & Han, Dong & Wang, Ping & He, Kaijian & Wei, Yi-Ming & Xie, Rui, 2019. "A multiscale analysis for carbon price drivers," Energy Economics, Elsevier, vol. 78(C), pages 202-216.
    8. Lutz, Benjamin Johannes & Pigorsch, Uta & Rotfuß, Waldemar, 2013. "Nonlinearity in cap-and-trade systems: The EUA price and its fundamentals," Energy Economics, Elsevier, vol. 40(C), pages 222-232.
    9. Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2020. "How connected is the carbon market to energy and financial markets? A systematic analysis of spillovers and dynamics," Energy Economics, Elsevier, vol. 90(C).
    10. Huang, Wenyang & Wang, Huiwen & Wei, Yigang, 2023. "Identifying the determinants of European carbon allowances prices: A novel robust partial least squares method for open-high-low-close data," International Review of Financial Analysis, Elsevier, vol. 90(C).
    11. Zheng, Yan & Yin, Hua & Zhou, Min & Liu, Wenhua & Wen, Fenghua, 2021. "Impacts of oil shocks on the EU carbon emissions allowances under different market conditions," Energy Economics, Elsevier, vol. 104(C).
    12. Friedrich, Marina & Mauer, Eva-Maria & Pahle, Michael & Tietjen, Oliver, 2020. "From fundamentals to financial assets: the evolution of understanding price formation in the EU ETS," EconStor Preprints 196150, ZBW - Leibniz Information Centre for Economics, revised 2020.
    13. Koch, Nicolas & Fuss, Sabine & Grosjean, Godefroy & Edenhofer, Ottmar, 2014. "Causes of the EU ETS price drop: Recession, CDM, renewable policies or a bit of everything?—New evidence," Energy Policy, Elsevier, vol. 73(C), pages 676-685.
    14. Geng, Jiang-Bo & Ji, Qiang & Fan, Ying, 2017. "The relationship between regional natural gas markets and crude oil markets from a multi-scale nonlinear Granger causality perspective," Energy Economics, Elsevier, vol. 67(C), pages 98-110.
    15. Fang, Sheng & Lu, Xinsheng & Li, Jianfeng & Qu, Ling, 2018. "Multifractal detrended cross-correlation analysis of carbon emission allowance and stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 551-566.
    16. repec:ipg:wpaper:2014-552 is not listed on IDEAS
    17. Remes, Piia, 2013. "Putting a Price on Carbon – Econometric Essays on the European Union Emissions Trading Scheme and its Impacts," Research Reports 62, VATT Institute for Economic Research.
    18. Gavard, Claire & Kirat, Djamel, 2018. "Flexibility in the market for international carbon credits and price dynamics difference with European allowances," Energy Economics, Elsevier, vol. 76(C), pages 504-518.
    19. Balcılar, Mehmet & Demirer, Rıza & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2016. "Risk spillovers across the energy and carbon markets and hedging strategies for carbon risk," Energy Economics, Elsevier, vol. 54(C), pages 159-172.
    20. Aatola, Piia, 2013. "Putting a Price on Carbon – Econometric Essays on the European Union Emissions Trading Scheme and its Impacts," Research Reports P62, VATT Institute for Economic Research.
    21. Cretí, Anna & Joëts, Marc, 2017. "Multiple bubbles in the European Union Emission Trading Scheme," Energy Policy, Elsevier, vol. 107(C), pages 119-130.

    More about this item

    Keywords

    Bivariate empirical mode decomposition; Nonlinear Granger causality test; Multi-scale analysis; Carbon market; Crude oil market;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E30 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - General (includes Measurement and Data)
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:51:y:2015:i:c:p:300-311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.