IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i7p653-d73651.html
   My bibliography  Save this article

Large-Scale Agricultural Management and Soil Meso- and Macrofauna Conservation in the Argentine Pampas

Author

Listed:
  • José Camilo Bedano

    (Department of Geology, National University of Río Cuarto, Ruta 36, Km. 601, Río Cuarto X5804 BYA, Argentina
    CONICET, National Council for Scientific and Technical Research, Buenos Aires C1033AAJ, Argentina
    These authors contributed equally to this work.)

  • Anahí Domínguez

    (Department of Geology, National University of Río Cuarto, Ruta 36, Km. 601, Río Cuarto X5804 BYA, Argentina
    CONICET, National Council for Scientific and Technical Research, Buenos Aires C1033AAJ, Argentina
    These authors contributed equally to this work.)

Abstract

Soil is the most basic resource for sustainable agricultural production; it promotes water quality, is a key component of the biogeochemical cycles and hosts a huge diversity of organisms. However, we are not paying enough attention to soil degradation produced by land use. Modern agriculture has been successful in increasing yields but has also caused extensive environmental damage, particularly soil degradation. In the Argentine Pampas, agriculturization reached a peak with the generalized use of the no-till technological package: genetically modified soybeans tolerant to glyphosate, no-till, glyphosate, and inorganic fertilizers. This phenomenon has been widely spread in the country; the no-till package has been applied in large areas and has been used by tenants in a 60%–70% of cultivated lands. Thus, those who were involved in developing management practices may not be the same as those who will face degradation issues related to those practices. Indeed, most evidence reviewed in this paper suggests that the most widely distributed practices in the Pampas region are actually producing severe soil degradation. Biological degradation is particularly important because soil biota is involved in numerous soil processes on which soil functioning relies, affecting soil fertility and productivity. For example, soil meso- and macrofauna are especially important in nutrient cycling and in soil structure formation and maintenance, and they are key components of the network that links microbial process to the scale of fields and landscapes where ecosystem services are produced. However, the knowledge of the impact of different agricultural managements on soil meso- and macrofauna in Pampas agroecosystems is far from conclusive at this stage. The reason for this lack of definite conclusions is that this area has been given less attention than in other parts of the world; the response of soil fauna to agricultural practices is complex and taxa-dependent; and there is a wide variety of practices in the main types of agricultural systems, making generalizations difficult. A review of the existing studies on soil meso- and macrofauna in agroecosystems, revealed that (a) agricultural soils, regardless of farming system, are strongly modified in biological aspects compared to the same soils without human interventions; (b) there are no conclusive results about no-till benefits compared to reduced tillage or conventional tillage; (c) agricultural managements that are alternative to the traditional conventional systems are very poorly represented in research.

Suggested Citation

  • José Camilo Bedano & Anahí Domínguez, 2016. "Large-Scale Agricultural Management and Soil Meso- and Macrofauna Conservation in the Argentine Pampas," Sustainability, MDPI, vol. 8(7), pages 1-25, July.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:7:p:653-:d:73651
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/7/653/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/7/653/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rigby, D. & Caceres, D., 2001. "Organic farming and the sustainability of agricultural systems," Agricultural Systems, Elsevier, vol. 68(1), pages 21-40, April.
    2. Ana B. Wingeyer & Telmo J. C. Amado & Mario Pérez-Bidegain & Guillermo A. Studdert & Carlos H. Perdomo Varela & Fernando O. Garcia & Douglas L. Karlen, 2015. "Soil Quality Impacts of Current South American Agricultural Practices," Sustainability, MDPI, vol. 7(2), pages 1-30, February.
    3. Michael Chappell & Liliana LaValle, 2011. "Food security and biodiversity: can we have both? An agroecological analysis," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 28(1), pages 3-26, February.
    4. Richard D. Bardgett & Wim H. van der Putten, 2014. "Belowground biodiversity and ecosystem functioning," Nature, Nature, vol. 515(7528), pages 505-511, November.
    5. Barrios, Edmundo, 2007. "Soil biota, ecosystem services and land productivity," Ecological Economics, Elsevier, vol. 64(2), pages 269-285, December.
    6. David Manuel-Navarrete & Gilberto Gallopín & Mariela Blanco & Martín Díaz-Zorita & Diego Ferraro & Hilda Herzer & Pedro Laterra & María Murmis & Guillermo Podestá & Jorge Rabinovich & Emilio Satorre &, 2009. "Multi-causal and integrated assessment of sustainability: the case of agriculturization in the Argentine Pampas," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 11(3), pages 621-638, June.
    7. Tiziano Gomiero, 2013. "Alternative Land Management Strategies and Their Impact on Soil Conservation," Agriculture, MDPI, vol. 3(3), pages 1-20, August.
    8. Jonathan A. Foley & Navin Ramankutty & Kate A. Brauman & Emily S. Cassidy & James S. Gerber & Matt Johnston & Nathaniel D. Mueller & Christine O’Connell & Deepak K. Ray & Paul C. West & Christian Balz, 2011. "Solutions for a cultivated planet," Nature, Nature, vol. 478(7369), pages 337-342, October.
    9. Cameron M. Pittelkow & Xinqiang Liang & Bruce A. Linquist & Kees Jan van Groenigen & Juhwan Lee & Mark E. Lundy & Natasja van Gestel & Johan Six & Rodney T. Venterea & Chris van Kessel, 2015. "Productivity limits and potentials of the principles of conservation agriculture," Nature, Nature, vol. 517(7534), pages 365-368, January.
    10. Sagoff, Mark, 2011. "The quantification and valuation of ecosystem services," Ecological Economics, Elsevier, vol. 70(3), pages 497-502, January.
    11. Rattan Lal, 2015. "Restoring Soil Quality to Mitigate Soil Degradation," Sustainability, MDPI, vol. 7(5), pages 1-21, May.
    12. Matin Qaim & Greg Traxler, 2005. "Roundup Ready soybeans in Argentina: farm level and aggregate welfare effects," Agricultural Economics, International Association of Agricultural Economists, vol. 32(1), pages 73-86, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Zhao & Kening Wu & Xiaoliang Li & Nan Gao & Mingming Yu, 2021. "Discussion on the Unified Survey and Evaluation of Cultivated Land Quality at County Scale for China’s 3rd National Land Survey: A Case Study of Wen County, Henan Province," Sustainability, MDPI, vol. 13(5), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    2. Lauren C. Ponisio & Paul R. Ehrlich, 2016. "Diversification, Yield and a New Agricultural Revolution: Problems and Prospects," Sustainability, MDPI, vol. 8(11), pages 1-15, November.
    3. de la Riva, Enrique G. & Ulrich, Werner & Batáry, Péter & Baudry, Julia & Beaumelle, Léa & Bucher, Roman & Čerevková, Andrea & Felipe-Lucia, María R. & Gallé, Róbert & Kesse-Guyot, Emmanuelle & Rembia, 2023. "From functional diversity to human well-being: A conceptual framework for agroecosystem sustainability," Agricultural Systems, Elsevier, vol. 208(C).
    4. Jiani Ma & Chao Zhang & Wenju Yun & Yahui Lv & Wanling Chen & Dehai Zhu, 2020. "The Temporal Analysis of Regional Cultivated Land Productivity with GPP Based on 2000–2018 MODIS Data," Sustainability, MDPI, vol. 12(1), pages 1-16, January.
    5. Anna Kocira & Mariola Staniak & Marzena Tomaszewska & Rafał Kornas & Jacek Cymerman & Katarzyna Panasiewicz & Halina Lipińska, 2020. "Legume Cover Crops as One of the Elements of Strategic Weed Management and Soil Quality Improvement. A Review," Agriculture, MDPI, vol. 10(9), pages 1-41, September.
    6. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    7. Kumara, T.M. Kiran & Kandpal, Ankita & Pal, Suresh, 2019. "Determinants and Impacts of Conservation Agriculture in South Asia: A Meta-Analysis of the Evidences," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 74(03), March.
    8. Tambo, J. & Mockshell, J., 2018. "Differential impacts of conservation agriculture technology options on household welfare in sub-Saharan Africa," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277035, International Association of Agricultural Economists.
    9. Elvira Molin & Michael Martin & Anna Björklund, 2021. "Addressing Sustainability within Public Procurement of Food: A Systematic Literature Review," Sustainability, MDPI, vol. 13(23), pages 1-21, December.
    10. Alberts Auzins & Ieva Leimane & Agnese Krievina & Inga Morozova & Andris Miglavs & Peteris Lakovskis, 2023. "Evaluation of Environmental and Economic Performance of Crop Production in Relation to Crop Rotation, Catch Crops, and Tillage," Agriculture, MDPI, vol. 13(8), pages 1-25, August.
    11. Monther M. Tahat & Kholoud M. Alananbeh & Yahia A. Othman & Daniel I. Leskovar, 2020. "Soil Health and Sustainable Agriculture," Sustainability, MDPI, vol. 12(12), pages 1-26, June.
    12. Mark V. Brady & Jordan Hristov & Fredrik Wilhelmsson & Katarina Hedlund, 2019. "Roadmap for Valuing Soil Ecosystem Services to Inform Multi-Level Decision-Making in Agriculture," Sustainability, MDPI, vol. 11(19), pages 1-20, September.
    13. Tambo, Justice A. & Mockshell, Jonathan, 2018. "Differential Impacts of Conservation Agriculture Technology Options on Household Income in Sub-Saharan Africa," Ecological Economics, Elsevier, vol. 151(C), pages 95-105.
    14. Mollie Chapman & Susanna Klassen & Maayan Kreitzman & Adrian Semmelink & Kelly Sharp & Gerald Singh & Kai M. A. Chan, 2017. "5 Key Challenges and Solutions for Governing Complex Adaptive (Food) Systems," Sustainability, MDPI, vol. 9(9), pages 1-30, September.
    15. Yubo Liao & Bangbang Zhang & Xiangbin Kong & Liangyou Wen & Dongheng Yao & Yuxuan Dang & Wenguang Chen, 2022. "A Cooperative-Dominated Model of Conservation Tillage to Mitigate Soil Degradation on Cultivated Land and Its Effectiveness Evaluation," Land, MDPI, vol. 11(8), pages 1-19, August.
    16. Michael Kuhwald & Wolfgang B. Hamer & Joachim Brunotte & Rainer Duttmann, 2020. "Soil Penetration Resistance after One-Time Inversion Tillage: A Spatio-Temporal Analysis at the Field Scale," Land, MDPI, vol. 9(12), pages 1-21, December.
    17. Siegmeier, Torsten & Möller, Detlev, 2013. "Mapping research at the intersection of organic farming and bioenergy — A scientometric review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 197-204.
    18. Cano, Priscila B. & Cabrini, Silvina M. & Peper, Alberto M. & Poggio, Santiago L., 2023. "Multi-criteria assessment of cropping systems for the sustainable intensification in the Pampas," Agricultural Systems, Elsevier, vol. 210(C).
    19. René Rietra & Marius Heinen & Oene Oenema, 2022. "A Review of Crop Husbandry and Soil Management Practices Using Meta-Analysis Studies: Towards Soil-Improving Cropping Systems," Land, MDPI, vol. 11(2), pages 1-31, February.
    20. Xu, Zhuo & He, Ping & Yin, Xinyou & Huang, Qiuhong & Ding, Wencheng & Xu, Xinpeng & Struik, Paul C., 2023. "Can the advisory system Nutrient Expert® balance productivity, profitability and sustainability for rice production systems in China?," Agricultural Systems, Elsevier, vol. 205(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:7:p:653-:d:73651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.