IDEAS home Printed from https://ideas.repec.org/a/ags/inijae/343441.html
   My bibliography  Save this article

Determinants and Impacts of Conservation Agriculture in South Asia: A Meta-Analysis of the Evidences

Author

Listed:
  • Kumara, T.M. Kiran
  • Kandpal, Ankita
  • Pal, Suresh

Abstract

Rice-wheat cropping system in the Indo-Gangetic plains is pivotal in ensuring food and livelihood security in South Asia. However, the productivity of the system is threatened by factors like climate change, urbanisation and excessive resource use. Conservation agriculture (CA) practices provide the scope for curbing the consequences of climate change by its resource saving and carbon emission as well as cost reducing potential. To analyse the effectiveness of CA under different crops, soil, and climatic conditions, a meta-analysis was conducted by synthesising the results of various experimental studies. Adoption of only zero/minimum/reduced tillage without integrating it with mulching and crop rotation in CA provided lesser yield as compared to conventional tillage. In contrast, crop yields were higher in CA when all the three practices, viz., conservation tillage practices, mulching and crop rotation were followed as compared to the conventional tillage. Crop yields were higher under reduced/minimum tillage as compared to zero tillage for all the crops considered for the study. Wheat, maize and pulses performed better in CA system as compared to rice in terms of water saving and yield. It was found that irrigation, soil cover and application of nitrogen were the crucial inputs in improving the performance of conservation tillage. Further, adoption of CA practices lead to significant reduction in the cost and at the same time provided better returns as compared to the conventional system. Training, targeting to irrigated, sub-tropical regions and fiscal incentive are critical for the successful implementation of CA in the region.

Suggested Citation

  • Kumara, T.M. Kiran & Kandpal, Ankita & Pal, Suresh, 2019. "Determinants and Impacts of Conservation Agriculture in South Asia: A Meta-Analysis of the Evidences," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 74(03), March.
  • Handle: RePEc:ags:inijae:343441
    DOI: 10.22004/ag.econ.343441
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/343441/files/Determinants%20and%20Impacts.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.343441?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jonathan A. Foley & Navin Ramankutty & Kate A. Brauman & Emily S. Cassidy & James S. Gerber & Matt Johnston & Nathaniel D. Mueller & Christine O’Connell & Deepak K. Ray & Paul C. West & Christian Balz, 2011. "Solutions for a cultivated planet," Nature, Nature, vol. 478(7369), pages 337-342, October.
    2. Cameron M. Pittelkow & Xinqiang Liang & Bruce A. Linquist & Kees Jan van Groenigen & Juhwan Lee & Mark E. Lundy & Natasja van Gestel & Johan Six & Rodney T. Venterea & Chris van Kessel, 2015. "Productivity limits and potentials of the principles of conservation agriculture," Nature, Nature, vol. 517(7534), pages 365-368, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lauren C. Ponisio & Paul R. Ehrlich, 2016. "Diversification, Yield and a New Agricultural Revolution: Problems and Prospects," Sustainability, MDPI, vol. 8(11), pages 1-15, November.
    2. Tambo, J. & Mockshell, J., 2018. "Differential impacts of conservation agriculture technology options on household welfare in sub-Saharan Africa," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277035, International Association of Agricultural Economists.
    3. René Rietra & Marius Heinen & Oene Oenema, 2022. "A Review of Crop Husbandry and Soil Management Practices Using Meta-Analysis Studies: Towards Soil-Improving Cropping Systems," Land, MDPI, vol. 11(2), pages 1-31, February.
    4. Xu, Zhuo & He, Ping & Yin, Xinyou & Huang, Qiuhong & Ding, Wencheng & Xu, Xinpeng & Struik, Paul C., 2023. "Can the advisory system Nutrient Expert® balance productivity, profitability and sustainability for rice production systems in China?," Agricultural Systems, Elsevier, vol. 205(C).
    5. José Camilo Bedano & Anahí Domínguez, 2016. "Large-Scale Agricultural Management and Soil Meso- and Macrofauna Conservation in the Argentine Pampas," Sustainability, MDPI, vol. 8(7), pages 1-25, July.
    6. Tambo, Justice A. & Mockshell, Jonathan, 2018. "Differential Impacts of Conservation Agriculture Technology Options on Household Income in Sub-Saharan Africa," Ecological Economics, Elsevier, vol. 151(C), pages 95-105.
    7. de la Riva, Enrique G. & Ulrich, Werner & Batáry, Péter & Baudry, Julia & Beaumelle, Léa & Bucher, Roman & Čerevková, Andrea & Felipe-Lucia, María R. & Gallé, Róbert & Kesse-Guyot, Emmanuelle & Rembia, 2023. "From functional diversity to human well-being: A conceptual framework for agroecosystem sustainability," Agricultural Systems, Elsevier, vol. 208(C).
    8. Emily L. Pakhtigian & Subhrendu K. Pattanayak & Jie-Sheng Tan-Soo, 2024. "Forest Fires, Smoky Kitchens, and Human Health in Indonesia," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(8), pages 2115-2141, August.
    9. Krishna Bahadur KC & Iftekharul Haque & Alexander F. Legwegoh & Evan D. G. Fraser, 2016. "Strategies to Reduce Food Loss in the Global South," Sustainability, MDPI, vol. 8(7), pages 1-13, June.
    10. Yubo Liao & Bangbang Zhang & Xiangbin Kong & Liangyou Wen & Dongheng Yao & Yuxuan Dang & Wenguang Chen, 2022. "A Cooperative-Dominated Model of Conservation Tillage to Mitigate Soil Degradation on Cultivated Land and Its Effectiveness Evaluation," Land, MDPI, vol. 11(8), pages 1-19, August.
    11. Rommel, Jens & Anggraini, Eva, 2018. "Spatially explicit framed field experiments on ecosystem services governance," Ecosystem Services, Elsevier, vol. 34(PB), pages 201-205.
    12. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Ascui, Francisco & Ball, Alex & Kahn, Lewis & Rowe, James, 2021. "Is operationalising natural capital risk assessment practicable?," Ecosystem Services, Elsevier, vol. 52(C).
    14. John M. Wallace & Alwyn Williams & Jeffrey A. Liebert & Victoria J. Ackroyd & Rachel A. Vann & William S. Curran & Clair L. Keene & Mark J. VanGessel & Matthew R. Ryan & Steven B. Mirsky, 2017. "Cover Crop-Based, Organic Rotational No-Till Corn and Soybean Production Systems in the Mid-Atlantic United States," Agriculture, MDPI, vol. 7(4), pages 1-21, April.
    15. Mathy Sane & Miroslav Hajek & Chukwudi Nwaogu & Ratna Chrismiari Purwestri, 2021. "Subsidy as An Economic Instrument for Environmental Protection: A Case of Global Fertilizer Use," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    16. Röös, Elin & Patel, Mikaela & Spångberg, Johanna, 2016. "Producing oat drink or cow's milk on a Swedish farm — Environmental impacts considering the service of grazing, the opportunity cost of land and the demand for beef and protein," Agricultural Systems, Elsevier, vol. 142(C), pages 23-32.
    17. Pradhan, Aliza & Chan, Catherine & Roul, Pravat Kumar & Halbrendt, Jacqueline & Sipes, Brent, 2018. "Potential of conservation agriculture (CA) for climate change adaptation and food security under rainfed uplands of India: A transdisciplinary approach," Agricultural Systems, Elsevier, vol. 163(C), pages 27-35.
    18. Jessica Aschemann-Witzel & Ilona De Hooge & Pegah Amani & Tino Bech-Larsen & Marije Oostindjer, 2015. "Consumer-Related Food Waste: Causes and Potential for Action," Sustainability, MDPI, vol. 7(6), pages 1-21, May.
    19. Ying Wang & Sen Yang & Jian Sun & Ziguang Liu & Xinmiao He & Jinyou Qiao, 2023. "Effects of Tillage and Sowing Methods on Soil Physical Properties and Corn Plant Characters," Agriculture, MDPI, vol. 13(3), pages 1-15, March.
    20. Omulo, Godfrey & Daum, Thomas & Köller, Karlheinz & Birner, Regina, 2024. "Unpacking the behavioral intentions of ‘emergent farmers’ towards mechanized conservation agriculture in Zambia," Land Use Policy, Elsevier, vol. 136(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:inijae:343441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/isaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.