IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v151y2018icp95-105.html
   My bibliography  Save this article

Differential Impacts of Conservation Agriculture Technology Options on Household Income in Sub-Saharan Africa

Author

Listed:
  • Tambo, Justice A.
  • Mockshell, Jonathan

Abstract

Conservation agriculture (CA), which consists of minimum soil disturbance, crop residue retention and crop rotation, is claimed to generate a number of agronomic, economic and environmental benefits. Recognising these potential benefits, CA is widely promoted in efforts towards sustainable agricultural intensification. However, there has been an intense debate about its suitability in smallholder farming environments, and this has stimulated a growing interest in the adoption and impacts of CA technologies in sub-Saharan Africa (SSA). Using survey data from maize-growing households in nine SSA countries, this paper seeks to add to the extant literature by examining the drivers and welfare impacts of individual and combined implementation of the three components of CA. We employ inverse-probability-weighting regression-adjustment and propensity score matching with multiple treatment estimators. Overall, results show that adoption of a CA technology significantly increases total household income and income per adult equivalent. Disaggregating the CA components, we find that adoption of the components in combination is associated with larger income gains than when the components are adopted in isolation, and the largest effect is achieved when households implement the three practices jointly. Nevertheless, implementation of the full CA package among the sampled households is very low, with an average adoption rate of 8%. We identify key factors that might spur increased adoption, including education, secure land rights, and access to institutional support services. Results further show that the determinants and impacts of the CA components vary considerably among the study countries, suggesting location specificity of CA. Our results are consistent across alternative estimators.

Suggested Citation

  • Tambo, Justice A. & Mockshell, Jonathan, 2018. "Differential Impacts of Conservation Agriculture Technology Options on Household Income in Sub-Saharan Africa," Ecological Economics, Elsevier, vol. 151(C), pages 95-105.
  • Handle: RePEc:eee:ecolec:v:151:y:2018:i:c:p:95-105
    DOI: 10.1016/j.ecolecon.2018.05.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800918300375
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2018.05.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael Lechner, 2002. "Program Heterogeneity And Propensity Score Matching: An Application To The Evaluation Of Active Labor Market Policies," The Review of Economics and Statistics, MIT Press, vol. 84(2), pages 205-220, May.
    2. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, April.
    3. Arslan, Aslihan & McCarthy, Nancy & Lipper, Leslie & Asfaw, Solomon & Cattaneo, Andrea, 2013. "Adoption and Intensity of Adoption of Conservation Farming Practices in Zambia," Food Security Collaborative Working Papers 147461, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    4. Marco Caliendo & Sabine Kopeinig, 2008. "Some Practical Guidance For The Implementation Of Propensity Score Matching," Journal of Economic Surveys, Wiley Blackwell, vol. 22(1), pages 31-72, February.
    5. Mazvimavi, Kizito & Twomlow, Steve, 2009. "Socioeconomic and institutional factors influencing adoption of conservation farming by vulnerable households in Zimbabwe," Agricultural Systems, Elsevier, vol. 101(1-2), pages 20-29, June.
    6. Gebremedhin, Berhanu & Swinton, Scott M., 2003. "Investment in soil conservation in northern Ethiopia: the role of land tenure security and public programs," Agricultural Economics, Blackwell, vol. 29(1), pages 69-84, July.
    7. John N. Ng’ombe & Thomson H. Kalinda & Gelson Tembo, 2017. "Does adoption of conservation farming practices result in increased crop revenue? Evidence from Zambia," Agrekon, Taylor & Francis Journals, vol. 56(2), pages 205-221, April.
    8. Jonathan A. Foley & Navin Ramankutty & Kate A. Brauman & Emily S. Cassidy & James S. Gerber & Matt Johnston & Nathaniel D. Mueller & Christine O’Connell & Deepak K. Ray & Paul C. West & Christian Balz, 2011. "Solutions for a cultivated planet," Nature, Nature, vol. 478(7369), pages 337-342, October.
    9. Teklewold, Hailemariam & Kassie, Menale & Shiferaw, Bekele & Köhlin, Gunnar, 2013. "Cropping system diversification, conservation tillage and modern seed adoption in Ethiopia: Impacts on household income, agrochemical use and demand for labor," Ecological Economics, Elsevier, vol. 93(C), pages 85-93.
    10. Knowler, Duncan & Bradshaw, Ben, 2007. "Farmers' adoption of conservation agriculture: A review and synthesis of recent research," Food Policy, Elsevier, vol. 32(1), pages 25-48, February.
    11. Ngoma, Hambulo & Mason, Nicole M. & Sitko, Nicholas, 2015. "Does Minimum Tillage with Planting Basins or Ripping Raise Maize Yields? Meso-panel Data Evidence from Zambia," Food Security Collaborative Working Papers 198701, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    12. Cameron M. Pittelkow & Xinqiang Liang & Bruce A. Linquist & Kees Jan van Groenigen & Juhwan Lee & Mark E. Lundy & Natasja van Gestel & Johan Six & Rodney T. Venterea & Chris van Kessel, 2015. "Productivity limits and potentials of the principles of conservation agriculture," Nature, Nature, vol. 517(7534), pages 365-368, January.
    13. Abdul Nafeo Abdulai, 2016. "Impact of conservation agriculture technology on household welfare in Zambia," Agricultural Economics, International Association of Agricultural Economists, vol. 47(6), pages 729-741, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tambo, J. & Mockshell, J., 2018. "Differential impacts of conservation agriculture technology options on household welfare in sub-Saharan Africa," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277035, International Association of Agricultural Economists.
    2. Michler, Jeffrey D. & Baylis, Kathy & Arends-Kuenning, Mary & Mazvimavi, Kizito, 2019. "Conservation agriculture and climate resilience," Journal of Environmental Economics and Management, Elsevier, vol. 93(C), pages 148-169.
    3. Sankhulani, Linda, 2021. "Impact evaluation of conservation agriculture on smallholder farmers’ livelihood in Zambia and Tanzania," Research Theses 334762, Collaborative Masters Program in Agricultural and Applied Economics.
    4. Kirui, Oliver & Tambo, Justice, 2021. "Yield Effects of Conservation Agriculture Under Fall Armyworm Stress: The Case of Zambia," 2021 Conference, August 17-31, 2021, Virtual 315882, International Association of Agricultural Economists.
    5. Alexandra Peralta & Scott M. Swinton & Songqing Jin, 2018. "The Secret to Getting Ahead Is Getting Started: Early Impacts of a Rural Development Project," Sustainability, MDPI, vol. 10(8), pages 1-20, July.
    6. Martey, Edward & Etwire, Prince Maxwell & Abdoulaye, Tahirou, 2020. "Welfare impacts of climate-smart agriculture in Ghana: Does row planting and drought-tolerant maize varieties matter?," Land Use Policy, Elsevier, vol. 95(C).
    7. Wondimagegn Tesfaye & Garrick Blalock & Nyasha Tirivayi, 2021. "Climate‐Smart Innovations and Rural Poverty in Ethiopia: Exploring Impacts and Pathways," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 878-899, May.
    8. Akter, Shaheen & Gathala, Mahesh K. & Timsina, Jagadish & Islam, Saiful & Rahman, Mahbubur & Hassan, Mustafa Kamrul & Ghosh, Anup Kumar, 2021. "Adoption of conservation agriculture-based tillage practices in the rice-maize systems in Bangladesh," World Development Perspectives, Elsevier, vol. 21(C).
    9. Makaiko G. Khonje & Julius Manda & Petros Mkandawire & Adane Hirpa Tufa & Arega D. Alene, 2018. "Adoption and welfare impacts of multiple agricultural technologies: evidence from eastern Zambia," Agricultural Economics, International Association of Agricultural Economists, vol. 49(5), pages 599-609, September.
    10. Gao, Li & Zhang, Wendong & Mei, Yingdan & Sam, Abdoul G. & Song, Yu & Jin, Shuqin, 2018. "Do farmers adopt fewer conservation practices on rented land? Evidence from straw retention in China," Land Use Policy, Elsevier, vol. 79(C), pages 609-621.
    11. Hailemariam Teklewold & Alemu Mekonnen & Gunnar Kohlin & Salvatore Di Falco, 2017. "Does Adoption Of Multiple Climate-Smart Practices Improve Farmers’ Climate Resilience? Empirical Evidence From The Nile Basin Of Ethiopia," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 1-30, February.
    12. Theriault, Veronique & Smale, Melinda & Haider, Hamza, 2016. "Gender Differences in the Adoption of Cereal Intensification Strategy Sets in Burkina Faso," Food Security International Development Working Papers 245896, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    13. Ainembabazi, John Herbert & Abdoulaye, Tahirou & Feleke, Shiferaw & Alene, Arega & Dontsop-Nguezet, Paul M. & Ndayisaba, Pierre Celestin & Hicintuka, Cyrille & Mapatano, Sylvain & Manyong, Victor, 2018. "Who benefits from which agricultural research-for-development technologies? Evidence from farm household poverty analysis in Central Africa," World Development, Elsevier, vol. 108(C), pages 28-46.
    14. Theriault, Veronique & Smale, Melinda & Haider, Hamza, 2017. "How Does Gender Affect Sustainable Intensification of Cereal Production in the West African Sahel? Evidence from Burkina Faso," World Development, Elsevier, vol. 92(C), pages 177-191.
    15. Verena Preusse & Nils Nölke & Meike Wollni, 2024. "Urbanization and adoption of sustainable agricultural practices in the rural‐urban interface of Bangalore, India," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 72(2), pages 167-198, June.
    16. Alice Turinawe & Lars Drake & Johnny Mugisha, 2015. "Adoption intensity of soil and water conservation technologies: a case of South Western Uganda," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(4), pages 711-730, August.
    17. Ngoma, Hambulo & Mulenga, Brian P. & Jayne, T.S., 2014. "What Explains Minimal Usage of Minimum Tillage Practices in Zambia? Evidence from District-representative Data," Food Security Collaborative Policy Briefs 171875, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    18. Andrea Morescalchi, 2021. "A new career in a new town. Job search methods and regional mobility of unemployed workers," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 20(2), pages 223-272, May.
    19. Sulinkhundla Maseko & Selma T Karuaihe & Damien Jourdain, 2023. "Impact of the adoption of residue retention on household maize yield in northern Zambia," Post-Print hal-04525209, HAL.
    20. Hambulo Ngoma, 2018. "Does minimum tillage improve the livelihood outcomes of smallholder farmers in Zambia?," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(2), pages 381-396, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:151:y:2018:i:c:p:95-105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.