IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v7y2015i9p11462-11483d54710.html
   My bibliography  Save this article

Assessing the Environmental Impact of Flax Fibre Reinforced Polymer Composite from a Consequential Life Cycle Assessment Perspective

Author

Listed:
  • Yelin Deng

    (Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA)

  • Yajun Tian

    (National Institute of Clean-and-Low-Carbon Energy, Shenhua NICE, Future Science & Technology Park, Changping District, Beijing 102209, China)

Abstract

The study implements the consequential life cycle assessment (CLCA) to provide a market based perspective on how overall environmental impact will change when shifting glass fibres to flax fibres as reinforcements in composite fabrication. With certain assumptions, the marginal flax fibre supply is identified to be a combination of Chinese flax fibre (70%) and French flax fibre (30%). Due to inferior cultivars and coal-fired electricity in Chinese flax cultivation, the CLCA study reveals that flax mat-PP has 0.8–2 times higher environmental impact values than the glass mat-PP in most environmental impact categories over the production and end-of-life (EoL) phases. For purpose of providing potential trajectories of marginal flax fibre supply, additional scenarios: the “all French fibre”, and “all Chinese fibre” are evaluated formulating the lower and upper boundaries in terms of environmental impact change, respectively. A “the attributional fibre supply mix” scenario is supplied as well. All of these scenarios are useful for policy analysis.

Suggested Citation

  • Yelin Deng & Yajun Tian, 2015. "Assessing the Environmental Impact of Flax Fibre Reinforced Polymer Composite from a Consequential Life Cycle Assessment Perspective," Sustainability, MDPI, vol. 7(9), pages 1-22, August.
  • Handle: RePEc:gam:jsusta:v:7:y:2015:i:9:p:11462-11483:d:54710
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/7/9/11462/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/7/9/11462/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schmitz, Andreas & Kaminski, Jacek & Maria Scalet, Bianca & Soria, Antonio, 2011. "Energy consumption and CO2 emissions of the European glass industry," Energy Policy, Elsevier, vol. 39(1), pages 142-155, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicole Bamber & Ian Turner & Baishali Dutta & Mohammed Davoud Heidari & Nathan Pelletier, 2023. "Consequential Life Cycle Assessment of Grain and Oilseed Crops: Review and Recommendations," Sustainability, MDPI, vol. 15(7), pages 1-28, April.
    2. Victoria Gonzalez & Xingqiu Lou & Ting Chi, 2023. "Evaluating Environmental Impact of Natural and Synthetic Fibers: A Life Cycle Assessment Approach," Sustainability, MDPI, vol. 15(9), pages 1-16, May.
    3. R. R. L. (Rick) van Loon & Ester Pujadas-Gispert & S. P. G. (Faas) Moonen & Rijk Blok, 2019. "Environmental Optimization of Precast Concrete Beams Using Fibre Reinforced Polymers," Sustainability, MDPI, vol. 11(7), pages 1-12, April.
    4. Roberto Aguado & Francesc Xavier Espinach & Fabiola Vilaseca & Quim Tarrés & Pere Mutjé & Marc Delgado-Aguilar, 2022. "Approaching a Zero-Waste Strategy in Rapeseed ( Brassica napus ) Exploitation: Sustainably Approaching Bio-Based Polyethylene Composites," Sustainability, MDPI, vol. 14(13), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jamshidi, Ali & Kurumisawa, Kiyofumi & Nawa, Toyoharu & Igarashi, Toshifumi, 2016. "Performance of pavements incorporating waste glass: The current state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 211-236.
    2. Mario Testa & Ornella Malandrino & Maria Rosaria Sessa & Stefania Supino & Daniela Sica, 2017. "Long-Term Sustainability from the Perspective of Cullet Recycling in the Container Glass Industry: Evidence from Italy," Sustainability, MDPI, vol. 9(10), pages 1-19, October.
    3. Bordigoni, Mathieu & Hita, Alain & Le Blanc, Gilles, 2012. "Role of embodied energy in the European manufacturing industry: Application to short-term impacts of a carbon tax," Energy Policy, Elsevier, vol. 43(C), pages 335-350.
    4. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Foley, Aoife M. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Rooney, David, 2022. "Decarbonizing the glass industry: A critical and systematic review of developments, sociotechnical systems and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    5. Gao, Kang & Yuan, Yijun, 2022. "Does market-oriented reform make the industrial sector “Greener” in China? Fresh evidence from the perspective of capital-labor-energy market distortions," Energy, Elsevier, vol. 254(PA).
    6. Carlo Cravero & Davide Marsano, 2023. "Numerical Simulation of Melted Glass Flow Structures inside a Glass Furnace with Different Heat Release Profiles from Combustion," Energies, MDPI, vol. 16(10), pages 1-16, May.
    7. Rehfeldt, Matthias & Fleiter, Tobias & Herbst, Andrea & Eidelloth, Stefan, 2020. "Fuel switching as an option for medium-term emission reduction - A model-based analysis of reactions to price signals and regulatory action in German industry," Energy Policy, Elsevier, vol. 147(C).
    8. Jan Broeze & Xuezhen Guo & Heike Axmann, 2023. "Trade-Off Analyses of Food Loss and Waste Reduction and Greenhouse Gas Emissions in Food Supply Chains," Sustainability, MDPI, vol. 15(11), pages 1-16, May.
    9. Sebastian Gärtner & Thomas Marx-Schubach & Matthias Gaderer & Gerhard Schmitz & Michael Sterner, 2023. "Techno-Economic Analysis of Carbon Dioxide Separation for an Innovative Energy Concept towards Low-Emission Glass Melting," Energies, MDPI, vol. 16(5), pages 1-25, February.
    10. Zhang, Wei & You, Jianmin & Lin, Weiwen, 2021. "Internet plus and China industrial system's low-carbon development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    11. Rehfeldt, M. & Worrell, E. & Eichhammer, W. & Fleiter, T., 2020. "A review of the emission reduction potential of fuel switch towards biomass and electricity in European basic materials industry until 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    12. Anna Burkowicz & Krzysztof Galos & Katarzyna Guzik, 2020. "The Resource Base of Silica Glass Sand versus Glass Industry Development: The Case of Poland," Resources, MDPI, vol. 9(11), pages 1-20, November.
    13. Lin, Boqiang & Moubarak, Mohamed, 2013. "Decomposition analysis: Change of carbon dioxide emissions in the Chinese textile industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 389-396.
    14. Coenraad D. Westbroek & Jennifer Bitting & Matteo Craglia & José M. C. Azevedo & Jonathan M. Cullen, 2021. "Global material flow analysis of glass: From raw materials to end of life," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 333-343, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:7:y:2015:i:9:p:11462-11483:d:54710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.