IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v9y2020i11p134-d448140.html
   My bibliography  Save this article

The Resource Base of Silica Glass Sand versus Glass Industry Development: The Case of Poland

Author

Listed:
  • Anna Burkowicz

    (Mineral and Energy Economy Research Institute, Polish Academy of Sciences, J. Wybickiego 7A, 31-261 Kraków, Poland)

  • Krzysztof Galos

    (Mineral and Energy Economy Research Institute, Polish Academy of Sciences, J. Wybickiego 7A, 31-261 Kraków, Poland)

  • Katarzyna Guzik

    (Mineral and Energy Economy Research Institute, Polish Academy of Sciences, J. Wybickiego 7A, 31-261 Kraków, Poland)

Abstract

The production of glass in Poland, especially of container and flat glass, has constantly risen for at least 30 years. New investments in this sector, which have recently been completed or are currently in progress, create optimistic prospects for further development of this industry, whose total annual production capacities in the next few years is expected to exceed 4 million tons. This will result in increasing demand for basic glass-making raw materials, especially high-quality silica sand (glass sand), which can be satisfied almost entirely from domestic sources. Poland as a country with a considerable resource base of these mineral raw materials, has noted a constantly growing production level that currently reaches approximately 2.8 million tons per year. This paper aims to characterize and interpret the development trends in the Polish glass industry in an international context, as well as the resulting increase in demand for glass sand. In this context, an attempt was made to answer questions concerning the sufficiency of the Polish domestic resource base for the production of glass sand. For this study, the leading recent international and Polish analyses, related to glass industry development, the resource base of glass silica sand, and the management of these types of sand, were taken into account, and were complemented by official statistical data and surveying of domestic glass producers. The performed analysis showed that when taking into account the available glass sand resources in developed deposits in Poland, it is possible to continue production at the existing or a slightly increasing level for another 20–25 years. Based on a more comprehensive perspective, however, it would be a good approach to continue providing access to those parts of currently extracted deposits of silica sand and sandstone that are now located outside of the existing exploitation licenses, as well as enabling the development of some satellite deposits in the Tomaszów Basin, which may prove difficult due to environmental factors.

Suggested Citation

  • Anna Burkowicz & Krzysztof Galos & Katarzyna Guzik, 2020. "The Resource Base of Silica Glass Sand versus Glass Industry Development: The Case of Poland," Resources, MDPI, vol. 9(11), pages 1-20, November.
  • Handle: RePEc:gam:jresou:v:9:y:2020:i:11:p:134-:d:448140
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/9/11/134/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/9/11/134/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wintour, Nora., 2015. "The glass industry : recent trends and changes in working conditions and employment relations," ILO Working Papers 994885063402676, International Labour Organization.
    2. -, 2015. "Requirements for the materials," Вестник УГУЭС. Наука, образование, экономика. Серия: Экономика, CyberLeninka;Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Уфимский государственный университет экономики и сервиса», issue 1 (11), pages 203-204.
    3. Schmitz, Andreas & Kaminski, Jacek & Maria Scalet, Bianca & Soria, Antonio, 2011. "Energy consumption and CO2 emissions of the European glass industry," Energy Policy, Elsevier, vol. 39(1), pages 142-155, January.
    4. Irina Glushankova & Aleksandr Ketov & Marina Krasnovskikh & Larisa Rudakova & Iakov Vaisman, 2018. "Rice Hulls as a Renewable Complex Material Resource," Resources, MDPI, vol. 7(2), pages 1-11, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Foley, Aoife M. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Rooney, David, 2022. "Decarbonizing the glass industry: A critical and systematic review of developments, sociotechnical systems and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    2. Jamshidi, Ali & Kurumisawa, Kiyofumi & Nawa, Toyoharu & Igarashi, Toshifumi, 2016. "Performance of pavements incorporating waste glass: The current state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 211-236.
    3. Mario Testa & Ornella Malandrino & Maria Rosaria Sessa & Stefania Supino & Daniela Sica, 2017. "Long-Term Sustainability from the Perspective of Cullet Recycling in the Container Glass Industry: Evidence from Italy," Sustainability, MDPI, vol. 9(10), pages 1-19, October.
    4. Bordigoni, Mathieu & Hita, Alain & Le Blanc, Gilles, 2012. "Role of embodied energy in the European manufacturing industry: Application to short-term impacts of a carbon tax," Energy Policy, Elsevier, vol. 43(C), pages 335-350.
    5. Milivoj Markovic & Nikola Draskovic & Jasminka Samardzija, 2017. "Competitive Advantage In Cost Sensitive Glass Packaging Industry Through Outbound Logistics," Business Logistics in Modern Management, Josip Juraj Strossmayer University of Osijek, Faculty of Economics, Croatia, vol. 17, pages 281-292.
    6. Yelin Deng & Yajun Tian, 2015. "Assessing the Environmental Impact of Flax Fibre Reinforced Polymer Composite from a Consequential Life Cycle Assessment Perspective," Sustainability, MDPI, vol. 7(9), pages 1-22, August.
    7. Madina E. Isametova & Rollan Nussipali & Nikita V. Martyushev & Boris V. Malozyomov & Egor A. Efremenkov & Aysen Isametov, 2022. "Mathematical Modeling of the Reliability of Polymer Composite Materials," Mathematics, MDPI, vol. 10(21), pages 1-19, October.
    8. Gao, Kang & Yuan, Yijun, 2022. "Does market-oriented reform make the industrial sector “Greener” in China? Fresh evidence from the perspective of capital-labor-energy market distortions," Energy, Elsevier, vol. 254(PA).
    9. Carlo Cravero & Davide Marsano, 2023. "Numerical Simulation of Melted Glass Flow Structures inside a Glass Furnace with Different Heat Release Profiles from Combustion," Energies, MDPI, vol. 16(10), pages 1-16, May.
    10. Rehfeldt, Matthias & Fleiter, Tobias & Herbst, Andrea & Eidelloth, Stefan, 2020. "Fuel switching as an option for medium-term emission reduction - A model-based analysis of reactions to price signals and regulatory action in German industry," Energy Policy, Elsevier, vol. 147(C).
    11. Jan Broeze & Xuezhen Guo & Heike Axmann, 2023. "Trade-Off Analyses of Food Loss and Waste Reduction and Greenhouse Gas Emissions in Food Supply Chains," Sustainability, MDPI, vol. 15(11), pages 1-16, May.
    12. Sebastian Gärtner & Thomas Marx-Schubach & Matthias Gaderer & Gerhard Schmitz & Michael Sterner, 2023. "Techno-Economic Analysis of Carbon Dioxide Separation for an Innovative Energy Concept towards Low-Emission Glass Melting," Energies, MDPI, vol. 16(5), pages 1-25, February.
    13. Zhang, Wei & You, Jianmin & Lin, Weiwen, 2021. "Internet plus and China industrial system's low-carbon development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    14. Wesseling, J.H. & Lechtenböhmer, S. & Åhman, M. & Nilsson, L.J. & Worrell, E. & Coenen, L., 2017. "The transition of energy intensive processing industries towards deep decarbonization: Characteristics and implications for future research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1303-1313.
    15. Rehfeldt, M. & Worrell, E. & Eichhammer, W. & Fleiter, T., 2020. "A review of the emission reduction potential of fuel switch towards biomass and electricity in European basic materials industry until 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    16. Lin, Boqiang & Moubarak, Mohamed, 2013. "Decomposition analysis: Change of carbon dioxide emissions in the Chinese textile industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 389-396.
    17. Agnieszka Cholewa-Wójcik & Agnieszka Kawecka & Carlo Ingrao & Valentina Siracusa, 2019. "Socio-Economic Requirements as a Fundament of Innovation in Food Packaging," Journal of Entrepreneurship, Management and Innovation, Fundacja Upowszechniająca Wiedzę i Naukę "Cognitione", vol. 15(1), pages 231-256.
    18. Coenraad D. Westbroek & Jennifer Bitting & Matteo Craglia & José M. C. Azevedo & Jonathan M. Cullen, 2021. "Global material flow analysis of glass: From raw materials to end of life," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 333-343, April.
    19. Victor I. Bolobov & Il’nur U. Latipov & Gregory G. Popov & George V. Buslaev & Yana V. Martynenko, 2021. "Estimation of the Influence of Compressed Hydrogen on the Mechanical Properties of Pipeline Steels," Energies, MDPI, vol. 14(19), pages 1-27, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:9:y:2020:i:11:p:134-:d:448140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.