IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v7y2015i7p8782-8800d52177.html
   My bibliography  Save this article

Analysis of Photovoltaic Applications in Zero Energy Building Cases of IEA SHC/EBC Task 40/Annex 52

Author

Listed:
  • Jin-Hee Kim

    (Green Energy Technology Research Center, Kongju National University, 275 Budae-dong, Cheonan, Chungnam 331-717, Korea
    These authors contributed equally to this work.)

  • Ha-Ryeon Kim

    (Department of Energy Systems Engineering, Kongju National University, 275 Budae-dong, Cheonan, Chungnam 331-717, Korea
    These authors contributed equally to this work.)

  • Jun-Tae Kim

    (Department of Architectural Engineering, Kongju National University, 275 Budae-dong, Cheonan, Chungnam 331-717, Korea)

Abstract

A Net Zero Energy Building (NZEB) considerably reduces the building energy load through high efficiency equipment and passive elements such as building orientation, high insulation, natural daylighting, and ventilation in order to achieve zero energy balance with on-site energy production from renewable energy systems applied to the building. For a Zero Energy Building (ZEB), the heating energy demand can be significantly reduced with high insulation and air tightness, while the cooling energy demand can be curtailed by applying shading device, cross ventilation, etc. As such, the electrical energy demand for a ZEB is relatively higher than its heat energy demand. Therefore, the application of a Renewable Energy System (RES) to produce electricity is necessary for a ZEB. In particular, Building Integrated Photovoltaic (BIPV) systems that generate electricity can play an important role for achieving zero energy balance in buildings; BIPVs are multi-functional and there are many ways to apply them into buildings. This study comprehensively analyzes photovoltaic (PV) applications in ZEB cases through the International Energy Agency Solar Heating and Cooling Programme (IEA SHC)/Energy in Buildings and Communities Programme (EBC) Task 40/Annex 52 activities, which include PV installation methods, PV cell type, and electricity generation. The most widely applied RES is the PV system, corresponding to 29 out of a total of 30 cases. Among the roof type PV systems, 71% were non-integrated. In addition, 14 of the 27 cases in which PV systems were applied, satisfied over 100% of the electricity energy demand from the PV system and were found to generate surplus electrical power.

Suggested Citation

  • Jin-Hee Kim & Ha-Ryeon Kim & Jun-Tae Kim, 2015. "Analysis of Photovoltaic Applications in Zero Energy Building Cases of IEA SHC/EBC Task 40/Annex 52," Sustainability, MDPI, vol. 7(7), pages 1-19, July.
  • Handle: RePEc:gam:jsusta:v:7:y:2015:i:7:p:8782-8800:d:52177
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/7/7/8782/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/7/7/8782/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamed, Ayman & Hasan, Ala & Sirén, Kai, 2014. "Fulfillment of net-zero energy building (NZEB) with four metrics in a single family house with different heating alternatives," Applied Energy, Elsevier, vol. 114(C), pages 385-399.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abhishek Gaur & Michael Lacasse & Marianne Armstrong, 2019. "Climate Data to Undertake Hygrothermal and Whole Building Simulations Under Projected Climate Change Influences for 11 Canadian Cities," Data, MDPI, vol. 4(2), pages 1-17, May.
    2. Ranjita Singh & Philip Walsh & Christina Mazza, 2019. "Sustainable Housing: Understanding the Barriers to Adopting Net Zero Energy Homes in Ontario, Canada," Sustainability, MDPI, vol. 11(22), pages 1-21, November.
    3. Xiaofeng Li & Vladimir Strezov, 2015. "Energy and Greenhouse Gas Emission Assessment of Conventional and Solar Assisted Air Conditioning Systems," Sustainability, MDPI, vol. 7(11), pages 1-19, November.
    4. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    5. Chul-sung Lee & Hyo-mun Lee & Min-joo Choi & Jong-ho Yoon, 2019. "Performance Evaluation and Prediction of BIPV Systems under Partial Shading Conditions Using Normalized Efficiency," Energies, MDPI, vol. 12(19), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Colclough, Shane & McGrath, Teresa, 2015. "Net energy analysis of a solar combi system with Seasonal Thermal Energy Store," Applied Energy, Elsevier, vol. 147(C), pages 611-616.
    2. Kütt, Lauri & Millar, John & Karttunen, Antti & Lehtonen, Matti & Karppinen, Maarit, 2018. "Thermoelectric applications for energy harvesting in domestic applications and micro-production units. Part I: Thermoelectric concepts, domestic boilers and biomass stoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 519-544.
    3. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    4. Villa-Arrieta, Manuel & Sumper, Andreas, 2019. "Economic evaluation of Nearly Zero Energy Cities," Applied Energy, Elsevier, vol. 237(C), pages 404-416.
    5. Javier M. Rey-Hernández & Eloy Velasco-Gómez & Julio F. San José-Alonso & Ana Tejero-González & Sergio L. González-González & Francisco J. Rey-Martínez, 2018. "Monitoring Data Study of the Performance of Renewable Energy Systems in a Near Zero Energy Building in Spain: A Case Study," Energies, MDPI, vol. 11(11), pages 1-17, November.
    6. Mottaghizadeh, Pegah & Jabbari, Faryar & Brouwer, Jack, 2022. "Integrated solid oxide fuel cell, solar PV, and battery storage system to achieve zero net energy residential nanogrid in California," Applied Energy, Elsevier, vol. 323(C).
    7. Al-Saadi, Saleh Nasser & Shaaban, Awni K., 2019. "Zero energy building (ZEB) in a cooling dominated climate of Oman: Design and energy performance analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 299-316.
    8. Garshasbi, Samira & Kurnitski, Jarek & Mohammadi, Yousef, 2016. "A hybrid Genetic Algorithm and Monte Carlo simulation approach to predict hourly energy consumption and generation by a cluster of Net Zero Energy Buildings," Applied Energy, Elsevier, vol. 179(C), pages 626-637.
    9. AlAjmi, Ali & Abou-Ziyan, Hosny & Ghoneim, Adel, 2016. "Achieving annual and monthly net-zero energy of existing building in hot climate," Applied Energy, Elsevier, vol. 165(C), pages 511-521.
    10. Diana D’Agostino & Luigi Mele & Francesco Minichiello & Carlo Renno, 2020. "The Use of Ground Source Heat Pump to Achieve a Net Zero Energy Building," Energies, MDPI, vol. 13(13), pages 1-22, July.
    11. Hassan A. Sleiman & Steffen Hempel & Roberto Traversari & Sander Bruinenberg, 2017. "An Assisted Workflow for the Early Design of Nearly Zero Emission Healthcare Buildings," Energies, MDPI, vol. 10(7), pages 1-26, July.
    12. Brinks, Pascal & Kornadt, Oliver & Oly, René, 2016. "Development of concepts for cost-optimal nearly zero-energy buildings for the industrial steel building sector," Applied Energy, Elsevier, vol. 173(C), pages 343-354.
    13. Reda, Francesco & Fatima, Zarrin, 2019. "Northern European nearly zero energy building concepts for apartment buildings using integrated solar technologies and dynamic occupancy profile: Focus on Finland and other Northern European countries," Applied Energy, Elsevier, vol. 237(C), pages 598-617.
    14. Sergio Gómez Melgar & Miguel Ángel Martínez Bohórquez & José Manuel Andújar Márquez, 2018. "uhuMEB: Design, Construction, and Management Methodology of Minimum Energy Buildings in Subtropical Climates," Energies, MDPI, vol. 11(10), pages 1-34, October.
    15. Li, Hangxin & Wang, Shengwei & Tang, Rui, 2019. "Robust optimal design of zero/low energy buildings considering uncertainties and the impacts of objective functions," Applied Energy, Elsevier, vol. 254(C).
    16. Cellura, Maurizio & Guarino, Francesco & Longo, Sonia & Mistretta, Marina, 2015. "Different energy balances for the redesign of nearly net zero energy buildings: An Italian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 100-112.
    17. Salata, Ferdinando & Ciancio, Virgilio & Dell'Olmo, Jacopo & Golasi, Iacopo & Palusci, Olga & Coppi, Massimo, 2020. "Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms," Applied Energy, Elsevier, vol. 260(C).
    18. Asaee, S. Rasoul & Ugursal, V. Ismet & Beausoleil-Morrison, Ian, 2019. "Development and analysis of strategies to facilitate the conversion of Canadian houses into net zero energy buildings," Energy Policy, Elsevier, vol. 126(C), pages 118-130.
    19. Ascione, Fabrizio & D'Agostino, Diana & Marino, Concetta & Minichiello, Francesco, 2016. "Earth-to-air heat exchanger for NZEB in Mediterranean climate," Renewable Energy, Elsevier, vol. 99(C), pages 553-563.
    20. Wu, Wei & Skye, Harrison M. & Domanski, Piotr A., 2018. "Selecting HVAC systems to achieve comfortable and cost-effective residential net-zero energy buildings," Applied Energy, Elsevier, vol. 212(C), pages 577-591.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:7:y:2015:i:7:p:8782-8800:d:52177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.