IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i7p993-d104566.html
   My bibliography  Save this article

An Assisted Workflow for the Early Design of Nearly Zero Emission Healthcare Buildings

Author

Listed:
  • Hassan A. Sleiman

    (CEA, LIST, Laboratoire d’Analyse de Données et Intelligence des Systèmes, Digiteo Labs Saclay, 91191 Gif Sur Yvette, France)

  • Steffen Hempel

    (Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany)

  • Roberto Traversari

    (TNO Innovation Centre Buildings, PO box Postbus 49, 2600 AA Delft, The Netherlands)

  • Sander Bruinenberg

    (DEMO Consultants, P.O. Box 642, 2600 AP Delft, The Netherlands)

Abstract

Energy efficiency in buildings is one of the main goals of many governmental policies due to their high impact on the carbon dioxide emissions in Europe. One of these targets is to reduce the energy consumption in healthcare buildings, which are known to be among the most energy-demanding building types. Although design decisions made at early design phases have a significant impact on the energy performance of the realized buildings, only a small portion of possible early designs is analyzed, which does not ensure an optimal building design. We propose an automated early design support workflow, accompanied by a set of tools, for achieving nearly zero emission healthcare buildings. It is intended to be used by decision makers during the early design phase. It starts with the user-defined brief and the design rules, which are the input for the Early Design Configurator (EDC). The EDC generates multiple design alternatives following an evolutionary algorithm while trying to satisfy user requirements and geometric constraints. The generated alternatives are then validated by means of an Early Design Validator (EDV), and then, early energy and cost assessments are made using two early assessment tools. A user-friendly dashboard is used to guide the user and to illustrate the workflow results, whereas the chosen alternative at the end of the workflow is considered as the starting point for the next design phases. Our proposal has been implemented using Building Information Models (BIM) and validated by means of a case study on a healthcare building and several real demonstrations from different countries in the context of the European project STREAMER.

Suggested Citation

  • Hassan A. Sleiman & Steffen Hempel & Roberto Traversari & Sander Bruinenberg, 2017. "An Assisted Workflow for the Early Design of Nearly Zero Emission Healthcare Buildings," Energies, MDPI, vol. 10(7), pages 1-26, July.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:993-:d:104566
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/7/993/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/7/993/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J�rgen Melzner & Sijie Zhang & Jochen Teizer & Hans-Joachim Bargst�dt, 2013. "A case study on automated safety compliance checking to assist fall protection design and planning in building information models," Construction Management and Economics, Taylor & Francis Journals, vol. 31(6), pages 661-674, June.
    2. Annunziata, Eleonora & Frey, Marco & Rizzi, Francesco, 2013. "Towards nearly zero-energy buildings: The state-of-art of national regulations in Europe," Energy, Elsevier, vol. 57(C), pages 125-133.
    3. Dascalaki, E.G. & Balaras, C.A. & Gaglia, A.G. & Droutsa, K.G. & Kontoyiannidis, S., 2012. "Energy performance of buildings—EPBD in Greece," Energy Policy, Elsevier, vol. 45(C), pages 469-477.
    4. Mohamed, Ayman & Hasan, Ala & Sirén, Kai, 2014. "Fulfillment of net-zero energy building (NZEB) with four metrics in a single family house with different heating alternatives," Applied Energy, Elsevier, vol. 114(C), pages 385-399.
    5. Hae Jin Kang, 2017. "Development of an Nearly Zero Emission Building (nZEB) Life Cycle Cost Assessment Tool for Fast Decision Making in the Early Design Phase," Energies, MDPI, vol. 10(1), pages 1-21, January.
    6. Deng, S. & Wang, R.Z. & Dai, Y.J., 2014. "How to evaluate performance of net zero energy building – A literature research," Energy, Elsevier, vol. 71(C), pages 1-16.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alfonso González González & Justo García-Sanz-Calcedo & David Rodríguez Salgado, 2018. "Evaluation of Energy Consumption in German Hospitals: Benchmarking in the Public Sector," Energies, MDPI, vol. 11(9), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Villa-Arrieta, Manuel & Sumper, Andreas, 2019. "Economic evaluation of Nearly Zero Energy Cities," Applied Energy, Elsevier, vol. 237(C), pages 404-416.
    2. Javier M. Rey-Hernández & Eloy Velasco-Gómez & Julio F. San José-Alonso & Ana Tejero-González & Sergio L. González-González & Francisco J. Rey-Martínez, 2018. "Monitoring Data Study of the Performance of Renewable Energy Systems in a Near Zero Energy Building in Spain: A Case Study," Energies, MDPI, vol. 11(11), pages 1-17, November.
    3. Al-Saadi, Saleh Nasser & Shaaban, Awni K., 2019. "Zero energy building (ZEB) in a cooling dominated climate of Oman: Design and energy performance analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 299-316.
    4. Garshasbi, Samira & Kurnitski, Jarek & Mohammadi, Yousef, 2016. "A hybrid Genetic Algorithm and Monte Carlo simulation approach to predict hourly energy consumption and generation by a cluster of Net Zero Energy Buildings," Applied Energy, Elsevier, vol. 179(C), pages 626-637.
    5. AlAjmi, Ali & Abou-Ziyan, Hosny & Ghoneim, Adel, 2016. "Achieving annual and monthly net-zero energy of existing building in hot climate," Applied Energy, Elsevier, vol. 165(C), pages 511-521.
    6. Sadaf Alam & Miimu Airaksinen & Risto Lahdelma, 2021. "Attitudes and Approaches of Finnish Retrofit Industry Stakeholders toward Achieving Nearly Zero-Energy Buildings," Sustainability, MDPI, vol. 13(13), pages 1-24, June.
    7. Asaee, S. Rasoul & Ugursal, V. Ismet & Beausoleil-Morrison, Ian, 2019. "Development and analysis of strategies to facilitate the conversion of Canadian houses into net zero energy buildings," Energy Policy, Elsevier, vol. 126(C), pages 118-130.
    8. Kristiansen, A.B. & Ma, T. & Wang, R.Z., 2019. "Perspectives on industrialized transportable solar powered zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 112-124.
    9. Li, Xian & Lin, Alexander & Young, Chin-Huai & Dai, Yanjun & Wang, Chi-Hwa, 2019. "Energetic and economic evaluation of hybrid solar energy systems in a residential net-zero energy building," Applied Energy, Elsevier, vol. 254(C).
    10. Salvalai, Graziano & Masera, Gabriele & Sesana, Marta Maria, 2015. "Italian local codes for energy efficiency of buildings: Theoretical definition and experimental application to a residential case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1245-1259.
    11. Zhang, Sheng & Sun, Yongjun & Cheng, Yong & Huang, Pei & Oladokun, Majeed Olaide & Lin, Zhang, 2018. "Response-surface-model-based system sizing for Nearly/Net zero energy buildings under uncertainty," Applied Energy, Elsevier, vol. 228(C), pages 1020-1031.
    12. Aste, Niccolò & Manfren, Massimiliano & Marenzi, Giorgia, 2017. "Building Automation and Control Systems and performance optimization: A framework for analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 313-330.
    13. Yoorae Noh & Shahryar Jafarinejad & Prashant Anand, 2024. "A Review on Harnessing Renewable Energy Synergies for Achieving Urban Net-Zero Energy Buildings: Technologies, Performance Evaluation, Policies, Challenges, and Future Direction," Sustainability, MDPI, vol. 16(8), pages 1-22, April.
    14. Lund, Henrik & Østergaard, Poul Alberg & Connolly, David & Mathiesen, Brian Vad, 2017. "Smart energy and smart energy systems," Energy, Elsevier, vol. 137(C), pages 556-565.
    15. Constantinos A. Balaras & Andreas I. Theodoropoulos & Elena G. Dascalaki, 2023. "Geographic Information Systems for Facilitating Audits of the Urban Built Environment," Energies, MDPI, vol. 16(11), pages 1-26, May.
    16. Fabrizio Ascione & Nicola Bianco & Rosa Francesca De Masi & Maria Dousi & S. Hionidis & S. Kaliakos & Elena Mastrapostoli & Michael Nomikos & Mattheos Santamouris & Afroditi Synnefa & Giuseppe Peter V, 2017. "Design and performance analysis of a zero-energy settlement in Greece," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 12(2), pages 141-161.
    17. Hyunjoo Lee & Misuk Lee & Sesil Lim, 2018. "Do Consumers Care about the Energy Efficiency of Buildings? Understanding Residential Choice Based on Energy Performance Certificates," Sustainability, MDPI, vol. 10(11), pages 1-18, November.
    18. Xie, Hailun & Eames, Matt & Mylona, Anastasia & Davies, Hywel & Challenor, Peter, 2024. "Creating granular climate zones for future-proof building design in the UK," Applied Energy, Elsevier, vol. 357(C).
    19. Caliskan, Hakan, 2015. "Thermodynamic and environmental analyses of biomass, solar and electrical energy options based building heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1016-1034.
    20. Colclough, Shane & McGrath, Teresa, 2015. "Net energy analysis of a solar combi system with Seasonal Thermal Energy Store," Applied Energy, Elsevier, vol. 147(C), pages 611-616.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:993-:d:104566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.