Development of concepts for cost-optimal nearly zero-energy buildings for the industrial steel building sector
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2016.04.007
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Nagy, Zoltán & Rossi, Dino & Hersberger, Christian & Irigoyen, Silvia Domingo & Miller, Clayton & Schlueter, Arno, 2014. "Balancing envelope and heating system parameters for zero emissions retrofit using building sensor data," Applied Energy, Elsevier, vol. 131(C), pages 56-66.
- Vaghefi, A. & Farzan, Farbod & Jafari, Mohsen A., 2015. "Modeling industrial loads in non-residential buildings," Applied Energy, Elsevier, vol. 158(C), pages 378-389.
- Wang, Xiaoxin & Kendrick, Christopher & Ogden, Raymond & Walliman, Nicholas & Baiche, Bousmaha, 2013. "A case study on energy consumption and overheating for a UK industrial building with rooflights," Applied Energy, Elsevier, vol. 104(C), pages 337-344.
- Mohamed, Ayman & Hasan, Ala & Sirén, Kai, 2014. "Fulfillment of net-zero energy building (NZEB) with four metrics in a single family house with different heating alternatives," Applied Energy, Elsevier, vol. 114(C), pages 385-399.
- Fong, K.F. & Lee, C.K., 2012. "Towards net zero energy design for low-rise residential buildings in subtropical Hong Kong," Applied Energy, Elsevier, vol. 93(C), pages 686-694.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Burek, Jasmina & Nutter, Darin W., 2019. "A life cycle assessment-based multi-objective optimization of the purchased, solar, and wind energy for the grocery, perishables, and general merchandise multi-facility distribution center network," Applied Energy, Elsevier, vol. 235(C), pages 1427-1446.
- Carlos A. Espino-Reyes & Naghelli Ortega-Avila & Norma A. Rodriguez-Muñoz, 2020. "Energy Savings on an Industrial Building in Different Climate Zones: Envelope Analysis and PV System Implementation," Sustainability, MDPI, vol. 12(4), pages 1-22, February.
- Xiaojing Meng & Beibei Wei & Yingni Zhai, 2020. "Sensitivity Analysis of Envelope Design Parameters of Industrial Buildings with Natural Ventilation," Sustainability, MDPI, vol. 12(24), pages 1-12, December.
- Gourlis, Georgios & Kovacic, Iva, 2017. "Passive measures for preventing summer overheating in industrial buildings under consideration of varying manufacturing process loads," Energy, Elsevier, vol. 137(C), pages 1175-1185.
- Prada, A. & Gasparella, A. & Baggio, P., 2018. "On the performance of meta-models in building design optimization," Applied Energy, Elsevier, vol. 225(C), pages 814-826.
- Maria Ferrara & Valentina Monetti & Enrico Fabrizio, 2018. "Cost-Optimal Analysis for Nearly Zero Energy Buildings Design and Optimization: A Critical Review," Energies, MDPI, vol. 11(6), pages 1-32, June.
- Geng, Shengnan & Wang, Yuan & Zuo, Jian & Zhou, Zhihua & Du, Huibin & Mao, Guozhu, 2017. "Building life cycle assessment research: A review by bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 176-184.
- Lee, Louis S.H. & Jim, C.Y., 2019. "Energy benefits of green-wall shading based on novel-accurate apportionment of short-wave radiation components," Applied Energy, Elsevier, vol. 238(C), pages 1506-1518.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lu, Yuehong & Wang, Shengwei & Yan, Chengchu & Huang, Zhijia, 2017. "Robust optimal design of renewable energy system in nearly/net zero energy buildings under uncertainties," Applied Energy, Elsevier, vol. 187(C), pages 62-71.
- Gourlis, Georgios & Kovacic, Iva, 2016. "A study on building performance analysis for energy retrofit of existing industrial facilities," Applied Energy, Elsevier, vol. 184(C), pages 1389-1399.
- Mottaghizadeh, Pegah & Jabbari, Faryar & Brouwer, Jack, 2022. "Integrated solid oxide fuel cell, solar PV, and battery storage system to achieve zero net energy residential nanogrid in California," Applied Energy, Elsevier, vol. 323(C).
- Al-Saadi, Saleh Nasser & Shaaban, Awni K., 2019. "Zero energy building (ZEB) in a cooling dominated climate of Oman: Design and energy performance analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 299-316.
- Garshasbi, Samira & Kurnitski, Jarek & Mohammadi, Yousef, 2016. "A hybrid Genetic Algorithm and Monte Carlo simulation approach to predict hourly energy consumption and generation by a cluster of Net Zero Energy Buildings," Applied Energy, Elsevier, vol. 179(C), pages 626-637.
- AlAjmi, Ali & Abou-Ziyan, Hosny & Ghoneim, Adel, 2016. "Achieving annual and monthly net-zero energy of existing building in hot climate," Applied Energy, Elsevier, vol. 165(C), pages 511-521.
- Li, Hangxin & Wang, Shengwei & Tang, Rui, 2019. "Robust optimal design of zero/low energy buildings considering uncertainties and the impacts of objective functions," Applied Energy, Elsevier, vol. 254(C).
- Li, Xian & Lin, Alexander & Young, Chin-Huai & Dai, Yanjun & Wang, Chi-Hwa, 2019. "Energetic and economic evaluation of hybrid solar energy systems in a residential net-zero energy building," Applied Energy, Elsevier, vol. 254(C).
- Long, Linshuang & Ye, Hong & Liu, Minghou, 2016. "A new insight into opaque envelopes in a passive solar house: Properties and roles," Applied Energy, Elsevier, vol. 183(C), pages 685-699.
- Long, Linshuang & Ye, Hong & Gao, Yanfeng & Zou, Ruqiang, 2014. "Performance demonstration and evaluation of the synergetic application of vanadium dioxide glazing and phase change material in passive buildings," Applied Energy, Elsevier, vol. 136(C), pages 89-97.
- Colclough, Shane & McGrath, Teresa, 2015. "Net energy analysis of a solar combi system with Seasonal Thermal Energy Store," Applied Energy, Elsevier, vol. 147(C), pages 611-616.
- Kütt, Lauri & Millar, John & Karttunen, Antti & Lehtonen, Matti & Karppinen, Maarit, 2018. "Thermoelectric applications for energy harvesting in domestic applications and micro-production units. Part I: Thermoelectric concepts, domestic boilers and biomass stoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 519-544.
- Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
- Capone, Martina & Guelpa, Elisa & Verda, Vittorio, 2023. "Potential for supply temperature reduction of existing district heating substations," Energy, Elsevier, vol. 285(C).
- Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
- Yang, Sungwoong & Cho, Hyun Mi & Yun, Beom Yeol & Hong, Taehoon & Kim, Sumin, 2021. "Energy usage and cost analysis of passive thermal retrofits for low-rise residential buildings in Seoul," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
- Wang, Xuan & Mi, Zhenhao & Li, Kang & Huang, Xiaodong & Bao, Wenjie & Song, Jinsong & Wang, Chengkai & Chen, Guoqing & Cao, Peng, 2024. "Design and transient analysis of renewable energy-based residential net-zero energy buildings with energy storage," Renewable Energy, Elsevier, vol. 220(C).
- Hye Yeon Kim & Hae Jin Kang, 2016. "A Study on Development of a Cost Optimal and Energy Saving Building Model: Focused on Industrial Building," Energies, MDPI, vol. 9(3), pages 1-19, March.
- Alhamwi, Alaa & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2018. "Modelling urban energy requirements using open source data and models," Applied Energy, Elsevier, vol. 231(C), pages 1100-1108.
- Liu, Zhijian & Liu, Yuanwei & He, Bao-Jie & Xu, Wei & Jin, Guangya & Zhang, Xutao, 2019. "Application and suitability analysis of the key technologies in nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 329-345.
More about this item
Keywords
Industrial buildings; Nearly zero-energy buildings; Building energy simulation; Energy performance of buildings; Energy concepts for buildings;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:173:y:2016:i:c:p:343-354. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.