IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v6y2014i10p6696-6713d40761.html
   My bibliography  Save this article

Environmental Sustainability and Economic Benefits of Dairy Farm Biogas Energy Production: A Case Study in Umbria

Author

Listed:
  • Biancamaria Torquati

    (Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06100 Perugia, Italy)

  • Sonia Venanzi

    (Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06100 Perugia, Italy)

  • Adriano Ciani

    (Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06100 Perugia, Italy)

  • Francesco Diotallevi

    (Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06100 Perugia, Italy)

  • Vincenzo Tamburi

    (Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06100 Perugia, Italy)

Abstract

Accelerating demand to reduce the environmental impact of fossil fuels has been driving widespread attention to renewable fuels, such as biogas. In fact, in the last decade numerous policy guidelines and laws regarding energy, the environment and agriculture have been issued to encourage the use of animal sewage as a raw material for the production of biogas. The production of energy from biogas in a dairy farm can provide a good opportunity for sustainable rural development, augmenting the farm’s income from traditional sources and helping to reduce the overall environmental impact of the energy sector. This paper investigates the trade-off between the environmental and economic benefits of an agro-energy farm in the Umbria region of Italy that employs livestock sewage and manure, dedicated energy crops (corn and triticale silage) and olive waste. The environmental analysis was performed using the LCA methodology, while the economic investigation was carried out by reconstructing the economic balance of the agro-energetic supply chain based on the budgets of each activity performed. The LCA results show, on the one hand, the predominant weight of producing dedicated crops compared to all other processes in the supply chain and, on the other hand, a significant reduction in environmental impact compared to that caused by energy production from fossil fuels. Economic analysis revealed that the results depend significantly on what rate per kWh the government incentives guarantee to agricultural producers of renewable energy.

Suggested Citation

  • Biancamaria Torquati & Sonia Venanzi & Adriano Ciani & Francesco Diotallevi & Vincenzo Tamburi, 2014. "Environmental Sustainability and Economic Benefits of Dairy Farm Biogas Energy Production: A Case Study in Umbria," Sustainability, MDPI, vol. 6(10), pages 1-18, September.
  • Handle: RePEc:gam:jsusta:v:6:y:2014:i:10:p:6696-6713:d:40761
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/6/10/6696/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/6/10/6696/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cherubini, Francesco, 2010. "GHG balances of bioenergy systems – Overview of key steps in the production chain and methodological concerns," Renewable Energy, Elsevier, vol. 35(7), pages 1565-1573.
    2. Muench, Stefan & Guenther, Edeltraud, 2013. "A systematic review of bioenergy life cycle assessments," Applied Energy, Elsevier, vol. 112(C), pages 257-273.
    3. Igliński, Bartłomiej & Buczkowski, Roman & Iglińska, Anna & Cichosz, Marcin & Piechota, Grzegorz & Kujawski, Wojciech, 2012. "Agricultural biogas plants in Poland: Investment process, economical and environmental aspects, biogas potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4890-4900.
    4. J.B. (Hans) Opschoor, 2009. "Sustainability," Chapters, in: Jan Peil & Irene van Staveren (ed.), Handbook of Economics and Ethics, chapter 69, Edward Elgar Publishing.
    5. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ilaria Zambon & Andrea Colantoni & Massimo Cecchini & Enrico Maria Mosconi, 2018. "Rethinking Sustainability within the Viticulture Realities Integrating Economy, Landscape and Energy," Sustainability, MDPI, vol. 10(2), pages 1-13, January.
    2. Ho-Young Kim & So-Yeon Park & Seung-Hoon Yoo, 2016. "Public Acceptability of Introducing a Biogas Mandate in Korea: A Contingent Valuation Study," Sustainability, MDPI, vol. 8(11), pages 1-16, October.
    3. Maurizio Carlini & Enrico Maria Mosconi & Sonia Castellucci & Mauro Villarini & Andrea Colantoni, 2017. "An Economical Evaluation of Anaerobic Digestion Plants Fed with Organic Agro-Industrial Waste," Energies, MDPI, vol. 10(8), pages 1-15, August.
    4. Gava, Oriana & Bartolini, Fabio & Brunori, Gianluca, 2015. "Spatial impacts and sustainability of farm biogas diffusion in Italy," 150th Seminar, October 22-23, 2015, Edinburgh, Scotland 212676, European Association of Agricultural Economists.
    5. Marta Gandiglio & Fabrizio De Sario & Andrea Lanzini & Silvia Bobba & Massimo Santarelli & Gian Andrea Blengini, 2019. "Life Cycle Assessment of a Biogas-Fed Solid Oxide Fuel Cell (SOFC) Integrated in a Wastewater Treatment Plant," Energies, MDPI, vol. 12(9), pages 1-31, April.
    6. Bartoli, Andrea & Hamelin, Lorie & Rozakis, Stelios & Borzęcka, Magdalena & Brandão, Miguel, 2019. "Coupling economic and GHG emission accounting models to evaluate the sustainability of biogas policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 133-148.
    7. Riccardo Accorsi & Lorenzo Versari & Riccardo Manzini, 2015. "Glass vs. Plastic: Life Cycle Assessment of Extra-Virgin Olive Oil Bottles across Global Supply Chains," Sustainability, MDPI, vol. 7(3), pages 1-23, March.
    8. Cristina Pavanello & Marcello Franchini & Stefano Bovolenta & Elisa Marraccini & Mirco Corazzin, 2024. "Sustainability Indicators for Dairy Cattle Farms in European Union Countries: A Systematic Literature Review," Sustainability, MDPI, vol. 16(10), pages 1-25, May.
    9. Zuzana LAJDOVA & Jan LAJDA & Jaroslav KAPUSTA & Peter BIELIK, 2016. "Consequences of maize cultivation intended for biogas production," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 62(12), pages 543-549.
    10. Teymoori Hamzehkolaei, Fatemeh & Amjady, Nima, 2018. "A techno-economic assessment for replacement of conventional fossil fuel based technologies in animal farms with biogas fueled CHP units," Renewable Energy, Elsevier, vol. 118(C), pages 602-614.
    11. Josef Navrátil & Stanislav Martinát & Tomáš Krejčí & Petr Klusáček & Richard J. Hewitt, 2021. "Conversion of Post-Socialist Agricultural Premises as a Chance for Renewable Energy Production. Photovoltaics or Biogas Plants?," Energies, MDPI, vol. 14(21), pages 1-21, November.
    12. Zuzana Juríčková & Zuzana Lušňáková & Marcela Hallová & Elena Horská & Monika Hudáková, 2020. "Environmental Impacts and Attitudes of Agricultural Enterprises for Environmental Protection and Sustainable Development," Agriculture, MDPI, vol. 10(10), pages 1-19, September.
    13. de Castro e Silva, Hellen Luisa & Huamán Córdova, Maxi Estefany & Barros, Regina Mambeli & Tiago Filho, Geraldo Lucio & Silva Lora, Electo Eduardo & Moreira Santos, Afonso Henriques & dos Santos, Ivan, 2022. "Lab-scale and economic analysis of biogas production from swine manure," Renewable Energy, Elsevier, vol. 186(C), pages 350-365.
    14. Gabriel Cucui & Constantin Aurelian Ionescu & Ioana Raluca Goldbach & Mihaela Denisa Coman & Elena Liliana Moiceanu Marin, 2018. "Quantifying the Economic Effects of Biogas Installations for Organic Waste from Agro-Industrial Sector," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
    15. Lerato Molieleng & Pieter Fourie & Ifeoma Nwafor, 2021. "Adoption of Climate Smart Agriculture by Communal Livestock Farmers in South Africa," Sustainability, MDPI, vol. 13(18), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammadrezaei, Rashed & Zareei, Samira & Behroozi- Khazaei, Nasser, 2018. "Optimum mixing rate in biogas reactors: Energy balance calculations and computational fluid dynamics simulation," Energy, Elsevier, vol. 159(C), pages 54-60.
    2. Daniela Szymańska & Aleksandra Lewandowska, 2015. "Biogas Power Plants in Poland—Structure, Capacity, and Spatial Distribution," Sustainability, MDPI, vol. 7(12), pages 1-19, December.
    3. Borrion, Aiduan Li & McManus, Marcelle C. & Hammond, Geoffrey P., 2012. "Environmental life cycle assessment of lignocellulosic conversion to ethanol: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4638-4650.
    4. Maghanaki, M. Mohammadi & Ghobadian, B. & Najafi, G. & Galogah, R. Janzadeh, 2013. "Potential of biogas production in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 702-714.
    5. Pierie, F. & van Someren, C.E.J. & Benders, R.M.J. & Bekkering, J. & van Gemert, W.J.Th. & Moll, H.C., 2015. "Environmental and energy system analysis of bio-methane production pathways: A comparison between feedstocks and process optimizations," Applied Energy, Elsevier, vol. 160(C), pages 456-466.
    6. Albers, Ariane & Collet, Pierre & Lorne, Daphné & Benoist, Anthony & Hélias, Arnaud, 2019. "Coupling partial-equilibrium and dynamic biogenic carbon models to assess future transport scenarios in France," Applied Energy, Elsevier, vol. 239(C), pages 316-330.
    7. Anna Rolewicz-Kalińska & Krystyna Lelicińska-Serafin & Piotr Manczarski, 2020. "The Circular Economy and Organic Fraction of Municipal Solid Waste Recycling Strategies," Energies, MDPI, vol. 13(17), pages 1-20, August.
    8. Kamila Klimek & Magdalena Kapłan & Serhiy Syrotyuk & Nikolay Bakach & Nikolay Kapustin & Ryszard Konieczny & Jakub Dobrzyński & Kinga Borek & Dorota Anders & Barbara Dybek & Agnieszka Karwacka & Grzeg, 2021. "Investment Model of Agricultural Biogas Plants for Individual Farms in Poland," Energies, MDPI, vol. 14(21), pages 1-30, November.
    9. Ericsson, Niclas & Nordberg, Åke & Sundberg, Cecilia & Ahlgren, Serina & Hansson, Per-Anders, 2014. "Climate impact and energy efficiency from electricity generation through anaerobic digestion or direct combustion of short rotation coppice willow," Applied Energy, Elsevier, vol. 132(C), pages 86-98.
    10. Pierobon, Francesca & Zanetti, Michela & Grigolato, Stefano & Sgarbossa, Andrea & Anfodillo, Tommaso & Cavalli, Raffaele, 2015. "Life cycle environmental impact of firewood production – A case study in Italy," Applied Energy, Elsevier, vol. 150(C), pages 185-195.
    11. Pierie, F. & Bekkering, J. & Benders, R.M.J. & van Gemert, W.J.Th. & Moll, H.C., 2016. "A new approach for measuring the environmental sustainability of renewable energy production systems: Focused on the modelling of green gas production pathways," Applied Energy, Elsevier, vol. 162(C), pages 131-138.
    12. Blengini, G.A. & Brizio, E. & Cibrario, M. & Genon, G., 2011. "LCA of bioenergy chains in Piedmont (Italy): A case study to support public decision makers towards sustainability," Resources, Conservation & Recycling, Elsevier, vol. 57(C), pages 36-47.
    13. Busola D. Akintayo & Oluwafemi E. Ige & Olubayo M. Babatunde & Oludolapo A. Olanrewaju, 2023. "Evaluation and Prioritization of Power-Generating Systems Using a Life Cycle Assessment and a Multicriteria Decision-Making Approach," Energies, MDPI, vol. 16(18), pages 1-18, September.
    14. Sastre, Carlos M. & Carrasco, Juan & Barro, Ruth & González-Arechavala, Yolanda & Maletta, Emiliano & Santos, Ana M. & Ciria, Pilar, 2016. "Improving bioenergy sustainability evaluations by using soil nitrogen balance coupled with life cycle assessment: A case study for electricity generated from rye biomass," Applied Energy, Elsevier, vol. 179(C), pages 847-863.
    15. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    16. Huopana, Tuomas & Song, Han & Kolehmainen, Mikko & Niska, Harri, 2013. "A regional model for sustainable biogas electricity production: A case study from a Finnish province," Applied Energy, Elsevier, vol. 102(C), pages 676-686.
    17. Scholz, Marco & Melin, Thomas & Wessling, Matthias, 2013. "Transforming biogas into biomethane using membrane technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 199-212.
    18. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
    19. Grzegorz Ślusarz & Barbara Gołębiewska & Marek Cierpiał-Wolan & Jarosław Gołębiewski & Dariusz Twaróg & Sebastian Wójcik, 2021. "Regional Diversification of Potential, Production and Efficiency of Use of Biogas and Biomass in Poland," Energies, MDPI, vol. 14(3), pages 1-20, January.
    20. Zhang, Chen & Sun, Zongxuan, 2017. "Trajectory-based combustion control for renewable fuels in free piston engines," Applied Energy, Elsevier, vol. 187(C), pages 72-83.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:6:y:2014:i:10:p:6696-6713:d:40761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.