IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i18p10468-d639633.html
   My bibliography  Save this article

Adoption of Climate Smart Agriculture by Communal Livestock Farmers in South Africa

Author

Listed:
  • Lerato Molieleng

    (Department of Agriculture, Central University of Technology, Free State, Bloemfontein 9300, South Africa)

  • Pieter Fourie

    (Department of Agriculture, Central University of Technology, Free State, Bloemfontein 9300, South Africa)

  • Ifeoma Nwafor

    (Centre for Applied Food Sustainability and Biotechnology (CAFSaB), Central University of Technology, Free State, Bloemfontein 9300, South Africa)

Abstract

The importance of adopting modern technology in agriculture, especially in a changing climate, cannot be underestimated in Africa. The aim of this review was to highlight the past and the status quo with regard to the adoption of current farming practices in relation to climate-smart agriculture (CSA) by communal livestock farmers in South Africa. The impact of animal agriculture on climate change was also deliberated. Different internet search engines and databases, like Google Scholar, EBSCO Host, Science Direct, etc., and peer-reviewed articles, books, and government and academic reports were employed to provide information to adequately address the aim. Keywords like “the impact of climate smart agriculture on communal livestock farmers”, “communal livestock in South Africa”, “communal farming and technology adoption”, etc. were used for the search. Various issues pertaining to the impact of animal agriculture on climate change, greenhouse gas (GHG) emissions, and implementing CSA in livestock farming were extensively discussed. The findings indicated that there is limited research on the adoption of CSA by communal livestock farmers in South Africa. The review concluded that strategies to adopt modern technology in communal areas should address the issues to enhance knowledge of farmers and all stakeholders, through increasing awareness, trainings, and skills programs. The government should build local capacity in innovative and affordable water and agricultural solutions, and reliable financial mechanisms should be in place to implement innovative sound technologies in communal areas.

Suggested Citation

  • Lerato Molieleng & Pieter Fourie & Ifeoma Nwafor, 2021. "Adoption of Climate Smart Agriculture by Communal Livestock Farmers in South Africa," Sustainability, MDPI, vol. 13(18), pages 1-18, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10468-:d:639633
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/18/10468/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/18/10468/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Biancamaria Torquati & Sonia Venanzi & Adriano Ciani & Francesco Diotallevi & Vincenzo Tamburi, 2014. "Environmental Sustainability and Economic Benefits of Dairy Farm Biogas Energy Production: A Case Study in Umbria," Sustainability, MDPI, vol. 6(10), pages 1-18, September.
    2. Robert D. Stewart & Marc D. Auffret & Amanda Warr & Andrew H. Wiser & Maximilian O. Press & Kyle W. Langford & Ivan Liachko & Timothy J. Snelling & Richard J. Dewhurst & Alan W. Walker & Rainer Roehe , 2018. "Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    3. Liebenberg, Frikkie, 2015. "Agricultural Advisory Services in South Africa," Working Papers 241722, University of Pretoria, Department of Agricultural Economics, Extension and Rural Development.
    4. Kaczan, David & Arslan, Aslihan & Lipper, Leslie, 2013. "Climate-Smart Agriculture? A review of current practice of agroforestry and conservation agriculture in Malawi and Zambia," ESA Working Papers 288985, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    5. Leslie Lipper & Philip Thornton & Bruce M. Campbell & Tobias Baedeker & Ademola Braimoh & Martin Bwalya & Patrick Caron & Andrea Cattaneo & Dennis Garrity & Kevin Henry & Ryan Hottle & Louise Jackson , 2014. "Climate-smart agriculture for food security," Nature Climate Change, Nature, vol. 4(12), pages 1068-1072, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Desalegn A. Gugissa & Zewdu Abro & Tadele Tefera, 2022. "Achieving a Climate-Change Resilient Farming System through Push–Pull Technology: Evidence from Maize Farming Systems in Ethiopia," Sustainability, MDPI, vol. 14(5), pages 1-20, February.
    2. Mohamed Rafik Noor Mohamed Qureshi & Ali Saeed Almuflih & Janpriy Sharma & Mohit Tyagi & Shubhendu Singh & Naif Almakayeel, 2022. "Assessment of the Climate-Smart Agriculture Interventions towards the Avenues of Sustainable Production–Consumption," Sustainability, MDPI, vol. 14(14), pages 1-24, July.
    3. Díaz Baca, Manuel Francisco & Moreno Lerma, Leonardo & Triana Ángel, Natalia & Burkart, Stefan, 2024. "The relationships between land tenure, cattle production, and climate change – A systematic literature review," Land Use Policy, Elsevier, vol. 141(C).
    4. Junjin Chen & Hong Zhou, 2023. "The Role of Contract Farming in Green Smart Agricultural Technology," Sustainability, MDPI, vol. 15(13), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paswel P. Marenya & Menale Kassie & Moti Jaleta & Dil Bahadur Rahut & Olaf Erenstein, 2017. "Predicting minimum tillage adoption among smallholder farmers using micro-level and policy variables," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 5(1), pages 1-22, December.
    2. Edmond Totin & Alcade C. Segnon & Marc Schut & Hippolyte Affognon & Robert B. Zougmoré & Todd Rosenstock & Philip K. Thornton, 2018. "Institutional Perspectives of Climate-Smart Agriculture: A Systematic Literature Review," Sustainability, MDPI, vol. 10(6), pages 1-20, June.
    3. Noor-E-Sabiha & Sanzidur Rahman, 2018. "Environment-Smart Agriculture and Mapping of Interactions among Environmental Factors at the Farm Level: A Directed Graph Approach," Sustainability, MDPI, vol. 10(5), pages 1-17, May.
    4. Asif Sardar & Adiqa K. Kiani & Yasemin Kuslu, 2021. "Does adoption of climate-smart agriculture (CSA) practices improve farmers’ crop income? Assessing the determinants and its impacts in Punjab province, Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10119-10140, July.
    5. Westermann, Olaf & Förch, Wiebke & Thornton, Philip & Körner, Jana & Cramer, Laura & Campbell, Bruce, 2018. "Scaling up agricultural interventions: Case studies of climate-smart agriculture," Agricultural Systems, Elsevier, vol. 165(C), pages 283-293.
    6. Mockshell, Jonathan & Kamanda, Josey Ondieki, 2017. "Beyond the agroecological and sustainable agricultural intensification debate: is blended sustainability the way forward?," IDOS Discussion Papers 16/2017, German Institute of Development and Sustainability (IDOS).
    7. Thornton, Philip K. & Whitbread, Anthony & Baedeker, Tobias & Cairns, Jill & Claessens, Lieven & Baethgen, Walter & Bunn, Christian & Friedmann, Michael & Giller, Ken E. & Herrero, Mario & Howden, Mar, 2018. "A framework for priority-setting in climate smart agriculture research," Agricultural Systems, Elsevier, vol. 167(C), pages 161-175.
    8. Jeetendra Prakash Aryal & Cathy R. Farnworth & Ritika Khurana & Srabashi Ray & Tek B. Sapkota & Dil Bahadur Rahut, 2020. "Does women’s participation in agricultural technology adoption decisions affect the adoption of climate‐smart agriculture? Insights from Indo‐Gangetic Plains of India," Review of Development Economics, Wiley Blackwell, vol. 24(3), pages 973-990, August.
    9. Islam, Zeenatul & Sabiha, Noor E & Salim, Ruhul, 2022. "Integrated environment-smart agricultural practices: A strategy towards climate-resilient agriculture," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 59-72.
    10. Nelson Mango & Clifton Makate & Lulseged Tamene & Powell Mponela & Gift Ndengu, 2018. "Adoption of Small-Scale Irrigation Farming as a Climate-Smart Agriculture Practice and Its Influence on Household Income in the Chinyanja Triangle, Southern Africa," Land, MDPI, vol. 7(2), pages 1-19, April.
    11. Kibria, Abu SMG & Costanza, Robert & Soto, José R, 2022. "Modeling the complex associations of human wellbeing dimensions in a coupled human-natural system: In contexts of marginalized communities," Ecological Modelling, Elsevier, vol. 466(C).
    12. Maren Radeny & Elizaphan J. O. Rao & Maurice Juma Ogada & John W. Recha & Dawit Solomon, 2022. "Impacts of climate-smart crop varieties and livestock breeds on the food security of smallholder farmers in Kenya," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(6), pages 1511-1535, December.
    13. Ignaciuk, Ada & Malevolti, Giulia & Scognamillo, Antonio & Sitko, Nicholas J., 2022. "Can food aid relax farmers’ constraints to adopting climate-adaptive agricultural practices? Evidence from Ethiopia, Malawi and the United Republic of Tanzania," ESA Working Papers 324073, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    14. Iban, Muzaffer Can & Aksu, Oktay, 2020. "A model for big spatial rural data infrastructure in Turkey: Sensor-driven and integrative approach," Land Use Policy, Elsevier, vol. 91(C).
    15. Scognamillo, Antonio & Sitko, Nicholas J., 2021. "Leveraging social protection to advance climate-smart agriculture: An empirical analysis of the impacts of Malawi’s Social Action Fund (MASAF) on farmers’ adoption decisions and welfare outcomes," World Development, Elsevier, vol. 146(C).
    16. Perelli, Chiara & Cacchiarelli, Luca & Peveri, Valentina & Branca, Giacomo, 2024. "Gender equality and sustainable development: A cross-country study on women's contribution to the adoption of the climate-smart agriculture in Sub-Saharan Africa," Ecological Economics, Elsevier, vol. 219(C).
    17. Dongrui Han & Hongyan Cai & Xiaohuan Yang & Xinliang Xu, 2020. "Multi-Source Data Modeling of the Spatial Distribution of Winter Wheat Yield in China from 2000 to 2015," Sustainability, MDPI, vol. 12(13), pages 1-16, July.
    18. Massamba Diop & Ngonidzashe Chirinda & Adnane Beniaich & Mohamed El Gharous & Khalil El Mejahed, 2022. "Soil and Water Conservation in Africa: State of Play and Potential Role in Tackling Soil Degradation and Building Soil Health in Agricultural Lands," Sustainability, MDPI, vol. 14(20), pages 1-29, October.
    19. Ziqiang Li & Hepei Zhang & Xiaoxiao Song & Weijiao Ye, 2024. "Social responsibility awareness and adoption of climate-smart agricultural practices: evidence from food-based family farms in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(5), pages 1-20, June.
    20. Helena Shilomboleni, 2020. "Political economy challenges for climate smart agriculture in Africa," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 37(4), pages 1195-1206, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10468-:d:639633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.